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Abstract

In this dissertation we analyze two different approaches to the problem

of solving system of polynomial equations.

In the first part of this thesis we analyze the complexity of certain al-

gorithms for solving system of equations, namely, homotopic methods

or path-following methods. Special attention is given to the eigenvalue

problem, introducing a projective framework to analyze this problem.

The main result is to bound the complexity of path-following methods

in terms of the length of the path in the condition metric, proving the

existence of short paths in the condition metric. We also address the

problem of the complexity of Bézout’s theorem, reconsidering Smale’s

algorithm in the light of work done in the intervening years. At the

end of this first part we define a new condition number adapted to

directionally uniform perturbations in a general framework of maps

between Riemannian manifolds, relating it with the classical condition

number in many interesting examples.

In the second part of this dissertation we center our attention on the

set of solutions of system of equations where the coefficients are taken

at random with some probability distribution. We start giving an

outline on Rice formulas for random fields. We review some recent

results concerning the expected number of real roots of random sys-

tems of polynomial equations. We also recall and give new proofs of

some known results about the undetermined case, that is, when the

random system of equations has less equations than unknowns. We

also study complex random systems of polynomial equations. We in-

troduce the technics of Rice formulas in the realm of complex random



fields. In particular, we give a probabilistic approach of Bézout’s the-

orem using Rice formulas. At the end of this second part we deal with

the following question: How are the roots of complex random poly-

nomials distributed?. We prove that points in the sphere associated

with roots of random polynomials via the stereographic projection,

are surprisingly well-suited with respect to the minimal logarithmic

energy on the sphere. That is, roots of random polynomials provide

a fairly good approximation to Elliptic Fekete points.



Résumé

Dans ce travail, nous étudions deux approches différentes pour de

résoudre un système d’équations polynomiales.

Dans une première partie, nous analysons la complexité de certains

algorithmes de résolution de systèmes d’équations, plus précisément

des “méthodes d’homotopie” appelées aussi “méthodes de suivi de

chemins”.

Nous analysons spécialement le problème de la valeur propre, en le

traitant dans un contexte projectif. Le résultat principal donne une

borne à la complexité des méthodes de suivi de chemins en fonction

de la longueur des chemins en la métrique du conditionnement, tout

en prouvant l’existence de chemins courts dans cette métrique.

Nous traitons aussi le problème de la complexité du Théorème de

Bézout, en re-comprenant l’algorithme de Smale à la lumière des

années de travail qui ont suivi. À la fin de cette première partie,

nous définissons une nouvelle notion de conditionnement, qui s’adapte

à des perturbations uniformément directionnelles, dans un contexte

général d’applications entre variétés de Riemann et nous montrons,

sur plusieurs exemples intéressants, comment il est relié au condition-

nement classique.

Dans une deuxième partie, nous étudions l’ensemble de solutions des

systèmes d’équations dont les coefficients sont aléatoires. Nous com-

mençons par donner une idée des formules de Rice pour des champs

aléatoires réels et nous rappelons quelques résultats concernant le

nombre moyen de racines réelles de systèmes d’équations polynomiales



aléatoires. Nous rappelons aussi quelques résultats connus sur le cas

sous-déterminé (c’est à dire le cas où le système d’équations aléatoires

a moins d’équations que de variables), en présentant quelques preuves

nouvelles.

Nous étudions aussi des systèmes d’équations polynomiales aléatoires

complexes, en introduisant des techniques de formules de Rice dans la

théorie des champs aléatoires complexes. En particulier, nous donnons

une approche probabiliste au Théorème de Bézout, en utilisant des

formules de Rice. À la fin de cette deuxième partie, nous traitons la

question suivante: comment sont distribuées les racines des polynômes

complexes aléatoires? Nous prouvons que certains points de la sphère

associés à des racines de polynômes aléatoires à travers la projection

stéréographique sont étonnamment bien placés par rapport à l’énergie

logarithmique minimale de la sphère. C’est à dire, les racines de

polynômes aléatoires donnent une bonne approximation des points de

Fekete elliptiques.



Resumen

En esta disertación analizamos dos enfoques diferentes para el prob-

lema de resolver sistemas de ecuaciones polinomiales.

En la primer parte de esta memoria analizamos la complejidad de cier-

tos algoritmos para resolver sistemas de ecuaciones, a saber, métodos

homotópicos o métodos de seguimiento de caminos. Ponemos espe-

cial atención al problema de valores propios, introduciendo un marco

proyectivo para analizar este problema. El resultado principal es aco-

tar la complejidad de caminos de homotoṕıa en términos de la longi-

tud del camino en la métrica de condición. También estudiaremos el

problema de la complejidad del teorema de Bézout, reconsiderando

el algoritmo de Smale en la luz del trabajo hecho en los últimos

años. Al final de esta primera parte definimos un nuevo número de

condición adaptado a perturbaciones con direcciones uniformes en un

contexto general entre variedades Riemannianas, relacionándolo con

los números de condición clásicos en varios ejemplos interesantes.

En la segunda parte de esta memoria nos concentramos en las solu-

ciones de sistemas de ecuaciones cuando los coeficientes de estos son

tomados al azar con cierta distribución de probabilidad. Empezare-

mos dando una breve reseña sobre la fórmula de Rice para campos

aleatorios. Repasaremos algunos resultados recientes relacionados al

número esperado de ráıces reales de un sistema de ecuaciones polino-

miales. También repasaremos, dando nuevas pruebas, algunos resul-

tados conocidos relacionados al caso indeterminado, es decir, cuando

el sistema de ecuaciones aleatorias tiene más variables que ecuaciones.

También estudiaremos sistemas polinomiales aleatorios complejos. In-

troduciremos las técnicas de Rice en la teoŕıa de campos aleatorios



complejos. En particular, daremos un enfoque probabiĺısta al teo-

rema de Bézout usando las fórmulas de Rice. En el final de esta

segunda parte consideramos el siguiente problema: ¿cómo están dis-

tribuidas las ráıces de polinomios complejos aleatorios? Probaremos

que puntos en la esfera asociados a ráıces de polinomios complejos

aleatorios están sorprendentemente bien distribúıdos con respecto al

mı́nimo de la enerǵıa logaŕıtmica sobre la esfera. Esto es, ráıces de

polinomios aleatorios brindan una muy buena aproximación de los

puntos de Fekete eĺıpticos.



...a la memoria de Jean-Pierre Dedieu y Mario Wschebor.
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puertas. Me resulta imposible expresar toda mi gratitud y afecto

hacia ti en este párrafo. Simplemente, haber trabajado contigo es un

de los recuerdos más lindos que me llevo.

A mi amigo Jean-Pierre Dedieu, gracias por el constante apoyo. Gra-

cias por compartir tu alegŕıa y las ganas de vivir. Nos quedamos con

un montón de lindos recuerdos y en el debe otros tantos. Te vamos a

extrañar.
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A Felipe Cucker, Gregorio Malajovich y Teresa Krick les quiero agrade-

cer por el apoyo constante a lo largo de estos años, y en particular

por las numerosas respuestas a mis preguntas. También les quiero

agradecer por hacerme sentir parte de un grupo.

También quiero agradecer a Peter Bürgisser por brindarme respaldo

en momentos cuando la obtención de una beca de doctorado se hizo

dif́ıcil. Gracias también por tener siempre las puertas abiertas.

Hay una gran cantidad de personas que también han participado en

alguna medida en el desarrollo de esta memoria. Entre ellos quiero

destacar a Luca Amodei, Jean-Marc Azäıs, Paola Boito, Guillaume
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Chapter 0

Introduction

The problem of solving systems of polynomial equations is a classical subject

with a long history. This problem has decisively influenced in the discovery of

complex numbers and group theory, and was one of the main motivations in the

development of Algebraic Geometry and Algebra.

This thesis is intimately related with the problem of solving systems of polyno-

mial equations. Precisely, we will pursue two different aspects of this problem. In

the first part of this dissertation we analyze the complexity of certain algorithms

for solving system of equations, namely, homotopic methods or path-following

methods. In the second part of this dissertation we center our attention on the

set of solutions of system of equations where the coefficients are taken at random

with some probability distribution.

In the following two sections we outline these two approaches and we explicit

the main contributions of this dissertation.

0.1 Complexity of Algorithms and Numerical

Analysis

Since Abel and Galois the unsolvability of polynomials of degree bigger than four

in terms of radicals has been known. Thereby, iterative methods play a leading

role in the study of this problem. Regarding this matter, approximating solutions

1



0. INTRODUCTION

of systems of equations is one of the main activities in Numerical Analysis, and

is one of the cornerstones of the foundation of the Complexity of Algorihtms.

A good measure of the complexity of an algorithm is the number of arithmetic

operations required to pass from the input to the output. The problem of studying

the complexity of algorithms has a long tradition in computer science, where the

discrete mathematics of Turing machines are the underlying mathematics. But

it was not until the early 80’s, that Steve Smale made an important contribution

in the theory, with his pionering paper Fundamental Theorem of Algebra [Smale,

1981], bringing the continuous mathematics of classical analysis and geometry to

this field.

On the other hand, until that moment, the tradition in Numerical Analysis

to study iterative methods was divided in a 2-part scheme: proof of convergence,

and asymptotic speed of convergence.

In his 1981 paper, Smale proposed a probabilistic analysis of complexity for

a certain variant of Newton’s method. Quoting Smale [1981]:

“ ...the Newton type methods fail in principle for certain degenerate

cases. And near the degenerate cases, these methods are very slow.

This motivates a statistical theory of cost, i.e. one which applies to

most problems in the sense of a probabilistic measure on the set of

problems (or data). There seems to be a trade off between speed and

certainty, and a question is how to make that precise.”

Smale [1997] suggested a systematic way to analyze the complexity of an

algorithm where the condition number plays a prominent role. Roughly, the

condition number x is a measure of how close to the space of degenerate inputs

x is.

The 2-part scheme suggested by Smale [1997], to analyze the complexity of

an algorithm, is the following:

1. Given an input x, bound the number of arithmetic opeartations K(x) by

K(x) ≤ (log µ(x) + size(x))c ,

2



0.1 Complexity of Algorithms and Numerical Analysis

where c is a universal constant, size(x) is the size of the input x, and µ is

the condition number.

2. Estimate the probability distribution of µ, where the tail takes the form

P (µ(x) > ε−1) ≤ εc,

for some probability measure on the space of inputs.

Key questions such as: What are the most efficient algorithms? or Which algo-

rithms have polynomial average complexity? can be addressed, building in this

way the foundations of complexity of numerical analysis.

During the last three decades, an enormous amount of work has been done on

this scheme for complexity of polynomial system solving. Let us mention a few

changes.

In their seminal paper Shub & Smale [1993a] relate, in the context of poly-

nomial system solving, the complexity K to three ingredients: the degree of the

considered system, the length of the path Γ(t), and the condition number of the

path. Precisely, they obtain the complexity

K ≤ CD3/2`(Γ)µ(Γ)2,

where C is a universal constant, D is the degree of the system, `(Γ) is the length

of Γ in the associated Riemannian structure, and µ(Γ) = supa≤t≤b µ (Γ(t)).

In Shub [2009] the complexity K of path-following methods for the polynomial

system solving problem is analyzed in terms of the condition length of the path.

It is in this spirit that the first part of this dissertation is developed.

0.1.1 Preliminaries

Before the statements of the main contributions of this thesis we introduce the

basic definitions associated to a computational problem.

3



0. INTRODUCTION

The Varieties V, Σ′ and Σ

Let X and Y be the spaces of inputs and outputs associated respectively to some

computational problem. In this thesis, the spaces X and Y are linear or differential

manifolds.

Suppose that X and Y are real (or complex) finite dimensional manifolds such

that dimX ≥ dimY.

The solution variety V ⊂ X×Y is the subset of pairs (x, y) ∈ X×Y such that

y is an output corresponding to the input x.

Let π1 : V → X and π2 : V → Y be the restrictions to the solution variety V

of the canonical projections (see the diagram).

V ⊂ X× Y

X Y

π1 π2

Note that algorithms attempt to “invert” the projection map π1, hence, the

subset of critical points of the projection π1 plays a central role in complexity of

algorithms.

Let Dπ1(x, y) : T(x,y)V→ TxX be the derivative of π1 and let Σ′ be the subset

of critical points of π1, that is,

Σ′ := {(x, y) ∈ V : rankDπ1(x, y) < dimX}.

Σ′ is called the ill-posed variety or critical variety.

Let

Σ := π1(Σ′) ⊂ X,

be the set of ill-posed inputs or discriminant variety.

In order to have local uniqueness of the “inverse” of π1, a reasonable hypothesis

is to assume that the dimV = dimX. When this is the case, according to the

implicit function theorem, for each (x, y) ∈ V\Σ′ there is a differentiable function
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0.1 Complexity of Algorithms and Numerical Analysis

locally defined between some neighborhoods Ux and Uy of x ∈ X and y ∈ Y

respectively, namely, the solution map

S (x, y) := π2 ◦ π−1
1 |Ux : Ux → Uy.

Its derivative

DS (x, y) : TxX→ TyY,

is the condition operator.

The Condition Number

Assume that X and Y are Riemannian (or Hermitian) manifolds. Let 〈·, ·〉x and

〈·, ·〉y be the Riemannian (or Hermitian) inner product in the tangent spaces TxX

and TyY at x and y respectively.

The condition number at (x, y) ∈ V \ Σ′ is defined as:

µ(x, y) := max
ẋ∈TxX
‖ẋ‖2x=1

‖DS (x, y)ẋ‖y.

This number is an upper-bound -to first-order approximation- of the worst-case

sensitivity of the output error with respect to small perturbations of the input.

There is an extensive literature about the role of the condition number in the

accuracy of algorithms, see for example Higham [1996] and references therein.

Remark: This general framework of maps between Riemannian manifolds was

motivated by Shub & Smale [1996] and Dedieu [1996]. This framework for a com-

putational problem differs from the usual one, where the problem being solved can

be described by a univalent function S . In the given context, we allow multi-

valued functions, that is, we allow inputs with different outputs. In this way,

one can define the condition number for the input x ∈ X as a certain functional

defined over (µ(x, y)){y∈π2(π−1
1 (x))}. When the function S is univalent the condi-

tion number µ(x) := µ(x, y) coincides with the classical condition number (see

Higham [1996], pag. 8).

In this thesis we will restrict ourselves to a particular family of computational

problems, namely, the problem of finding roots of systems of polynomial equa-
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0. INTRODUCTION

tions. Therefore, in this case, the space of inputs X is a certain subspace of system

of polynomial equations over some field, and the space of outputs Y is associated

to the set of “all” possible solutions. The solution variety V = ev−1(0), where ev

is the evaluation map, i.e. ev(F, z) = F (z) for F ∈ X and z ∈ Y.

In Malajovich [2011] one can find an extension to the problem of finding roots

of analytic equations.

Path-Following Methods

Let F ∈ X be a system of equations one wishes to solve. Roughly, path-following

methods or homotopy methods consists in considering a new system F0, with a

prescribed solution z0 ∈ Y, and then attempting to approximate the (π1) lifted

path (Ft, zt) ∈ V, 0 ≤ t ≤ 1, of some path Ft ∈ X joining F0 with F = F1. If this

procedure succeeds, then z1 is a solution of our problem.

The lift of the path Ft, 0 ≤ t ≤ 1, by the projection π1, exists provided that

Ft ∈ X \ Σ for all 0 ≤ t ≤ 1.

The algorithmic way to do this procedure is to construct a finite number of

pairs

(Ftk , z
′
tk

), 0 = t0 ≤ tk ≤ tK = 1,

such that z′tk is an approximation of ztk .

A possible scheme to find the approximations z′tk is to consider a predictor-

corrector algorithm (cf. Allgower & Georg [1990]).

In this thesis we will be mainly concern with the following approximation:

z′tk+1
:= NFtk+1

(ztk),

where NF denotes the Newton map associated to the system F .

For a detailed account in path-following methods see Allgower & Georg [1990].

6



0.1 Complexity of Algorithms and Numerical Analysis

Canonical Hermitian Structures

Given a finite dimensional vector space V over K with the Hermitian inner prod-

uct 〈·, ·〉 and 0 6= v ∈ V , we let

v⊥ = {w ∈ V : 〈w, v〉 = 0}.

The vector space v⊥ is a model for the tangent space TvP(V ), of the projective

space P(V ) at the equivalence class of v (which we denote by v).

In this way we can define an Hermitian structure over P(V ) in the following

way: for v ∈ V ,

〈w,w′〉v :=
〈w,w′〉
‖v‖2

,

for all w, w′ ∈ v⊥.

The space K` is equipped with the canonical Hermitian inner product 〈·, ·〉,
namely

〈x, y〉 =
∑̀
k=0

xk yk.

The space Kn×n is equipped with the Frobenius Hermitian inner product

〈A,B〉F := trace (B∗A),

where B∗ denotes the adjoint of B.

0.1.2 Main Contributions

In this section we introduce the main contributions given in this thesis associated

to the complexity of algorithms in numerical analysis.

0.1.2.1 Complexity of The Eigenvalue Problem

The eigenvalue problem is the problem to solve, for a fixed matrix A ∈ Kn×n, the

following system of polynomial equations:

(λIn − A)v = 0, v 6= 0,

7



0. INTRODUCTION

where v ∈ Kn, λ ∈ K. Here K = R or C.

Classical algorithms for solving the eigenvalue problem may be divided into

two classes: QR methods and Krylov subspace methods.

Even these methods have a long history, surprisingly, the complexity of the

eigenvalue problem is still an open problem.

In this thesis we will study path-following methods for the eigenvalue problem.

In the context of polynomial system solving, the eigenvalue problem may be

considered as a quadratic system of equations. However, Shub & Smale [1993a]

and Shub & Smale [1996] do not apply since the eigenvalue problem as a quadratic

system belongs to the subset of ill-posed problems of generic quadratic systems.

(See Li [1997]). Therefore, in order to analyze the complexity of the eigenvalue

problem, a different framework is required. Here we consider the eigenvalue

problem as a bilinear problem.

In Chapter 1, following Armentano [2011a], we introduce a projective frame-

work to analyze this problem. We define a condition number and a Newton’s map

appropriate for this context, proving a version of the γ-Theorem and a condition

number theorem for this context. The main result in Chapter 1 is to bound the

complexity of path-following methods in terms of the length of the path in the

condition metric.

Let us outline some results.

Since the system of equations (λIn − A)v = 0 is homogeneous in v ∈ Kn and

also in (A, λ) ∈ Kn×n ×K, we define the solution variety as

V =:
{

(A, λ, v) ∈ P
(
Kn×n ×K

)
× P (Kn) : (λIn − A)v = 0

}
.

The solution variety V is bi-projective algebraic subvariety of P
(
Kn×n×K

)
×

P(Kn). Moreover, V is also a smooth manifold and its dimension is equal to the

dimension of P(Kn×n).

Note that the solution variety differs from the general setting defined in the

Preliminaries. However, as we will see in Chapter 1 we can define a natural

projection π : V → P(Kn×n), given by π(A, λ, v) = A. In this way, we may

consider the space P(Kn×n) as the input space, and hence, we may proceed as in

the Preliminaries section.

8



0.1 Complexity of Algorithms and Numerical Analysis

Let W ⊂ V be the set of well-posed problems. It is not difficult to prove that

W is the set of triples (A, λ, v) ∈ V such that λ is a simple eigenvalue. In that

case, the operator Πv⊥(λIn−A)|v⊥ is invertible, where Πv⊥ denotes the orthogonal

projection of Kn onto v⊥.

As in the Preliminaries section, when (A, λ, v) belongs to W, we can define the

solution map S = π−1|UA : UA → V defined in some neighborhood UA ⊂ P(Kn×n)

of A such that π−1(A) = (A, λ, v). It associates to any matrix B ∈ UA the

eigentriple (B, λB, vB) close to (A, λ, v). Note that one can decompose S in two

solutions maps, namely, the solution map of the eigenvalue given by Sλ(B) =

(B, λB), and the solution map of the eigenvector given by Sv(B) = vB.

The space P
(
Kn×n × K

)
× P(Kn) inherits the Hermitian product structure

‖(Ȧ, λ̇, v̇)‖2
(A,λ,v) = ‖(Ȧ, λ̇)‖2

(A,λ) + ‖v̇‖2
v for all (Ȧ, λ̇, v̇) ∈ (A, λ)⊥ × v⊥.

Then we can define the condition numbers of the eigenvalue and eigenvector

in the following way:

µλ(A, λ, v) = sup
Ḃ∈A⊥

‖Ḃ‖F=‖A‖F

‖DSλ(A, λ, v)Ḃ‖(A,λ)

µv(A, λ, v) = sup
Ḃ∈A⊥

‖Ḃ‖F=‖A‖F

‖DSv(A, λ, v)Ḃ‖v

Then, for (A, λ, v) ∈W we obtain:

µλ(A, λ, v) =
1

1 + |λ|2
‖A‖2F

·
[
1 +
‖v‖2 · ‖u‖2

|〈v, u〉|2

]1/2

;

µv(A, λ, v) = ‖A‖F · ‖Πv⊥(λIn − A)|v⊥−1‖,

where 0 6= u ∈ Kn is a left eigenvector of A with associate eigenvalue λ, ‖ · ‖F
and ‖ · ‖ are the Frobenius and operator norms in the space of matrices.

Let (A, λ, v) ∈W. If (λIn −A)∗v = 0, that is, if v is also a left eigenvector of

A with eigenvalue λ, then,

µλ(A, λ, v) =

√
2

1 + |λ|2
‖A‖2F

.

9
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This is the case when A is normal, i.e. A∗A = AA∗. On the other hand, µv

happens to be more interesting since, roughly speaking, it measures how close to

λ others eigenvalues are.

In particular, when A ∈ P(Kn×n) is a normal matrix, and (A, λ, v) ∈W then

µv(A, λ, v) =
‖A‖F

mini |λ− λi|
,

where the minimum is taken for λi an eigenvalue of A different from λ.

As we will see in Chapter 1, the condition number µλ is somehow controlled

by µv. Thereby, we define the condition number of the eigenvalue problem at

(A, λ, v) ∈W as

µ(A, λ, v) := max {1, µv(A, λ, v)} .

In Chapter 1 we prove that, for (A, λ, v) ∈W, one get

µ(A, λ, v) ≤ 1

sin(dP2 ((A, λ, v),Σ′))
.

In the literature, these type of results relating the condition number to the dis-

tance to ill-posedness are known as the Condition Number Theorems.

From the point of view of complexity, these type of results are important to

obtain probability estimates of the condition number. (See Smale [1981]).

When Γ(t), a ≤ t ≤ b, is an absolutely continuous path in W, we define its

condition-length as

`µ(Γ) :=

∫ b

a

∥∥∥Γ̇(t)
∥∥∥

Γ(t)
· µ (Γ(t)) dt,

where
∥∥∥Γ̇(t)

∥∥∥
Γ(t)

is the norm of Γ̇(t) is the Riemannian structure on V, inherited

from P
(
Kn×n ×K

)
× P(Kn).

The main result in Chapter 1 is:

There is a universal constant C > 0 such that for any absolutely

continuous path Γ in W, there exists a sequence which approximates

10



0.1 Complexity of Algorithms and Numerical Analysis

Γ, and such that the complexity of the sequence is

K ≤ C `µ(Γ) + 1.

(One may choose C = 120).

This result motivates the study of geodesics in the condition length structure

on V for the eigenvalue problem. This seems to be a very hard problem.

In Chapter 2 we address the problem of the existence of short paths in the

condition metric.

Let {e1, . . . , en} be the canonical basis of Kn, and let G be the rank one

matrix G := e1 · e∗1 ∈ Kn×n. Let W0 be the set of problems (A, λ, v) ∈ W such

that µ(A, λ, v) = 1. Notice that (G, 1, e1) ∈W0. Then the main result of Chapter

2 is the following:

For every problem (A, λ, v) ∈ W there exist a path Γ in W joining

(A, λ, v) with (G, 1, e1), and such that

`µ(Γ) ≤ C
√
n · (C ′ + log (µ(A, λ, v))),

for some universal constant C and C ′.

(One may choose C ≤
√

6 and C ′ ≤ 10.)

0.1.2.2 Complexity of Bezout’s Theorem

In his 1981 Fundamental Theorem of Algebra paper Steve Smale initiated the

complexity theory of finding a solution of polynomial equations of one complex

variable by a variant of Newton’s method.

Smale’s algorithm may be given the following interpretation. For z0 ∈ C,

consider ft = f − (1 − t)f(z0), for 0 ≤ t ≤ 1. ft is a polynomial of the same

degree as f , z0 is a zero of f0 and f1 = f . So, we analytically continue z0 to zt a

zero of ft. For t = 1 we arrive at a zero of f . Newton’s method is then used to

produce a discrete numerical approximation to the path (ft, zt).

Smale’s result was not finite average cost. In the series of papers 1993a, 1993b,

1993c, 1996, Shub & Smale made some further changes and achieved enough
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0. INTRODUCTION

results for Smale 17th problem to emerge a reasonable if challenging research

goal. Let us recall the 17th problem from Smale [2000]:

Problem 17: Solving Polynomial Equations.

Can a zero of n-complex polynomial equations in n-unknowns be found

approximately, on the average, in polynomial time with a uniform

algorithm?

In Chapter 3, following a joint work with Michael Shub (c.f. Armentano &

Shub [2012]), we reconsider Smale’s algorithm in the light of work done in the

intervening years about this problem.

In the following lines we will give an outline of the main result.

Let H(d) = Hd1 × · · · × Hdn where Hdi is the vector space of homogeneous

polynomials of degree di in n+ 1 complex variables.

On Hdi we put a unitarily invariant Hermitian structure which we first encoun-

tered in the book Weyl [1939] and which is sometimes called Weyl, Bombieri-Weyl

or Kostlan Hermitian structure depending on the applications considered.

For α = (α0, . . . , αn) ∈ Nn+1, ‖α‖ = di the monomial xα = xα0
0 · · ·xαnn , the

Weyl Hermitian structure makes 〈xα, xβ〉 = 0, for α 6= β and

〈xα, xα〉 =

(
di
α

)−1

=

(
di!

α0! · · ·αn!

)−1

.

On H(d) we put the product structure

〈f, g〉 =
n∑
i=1

〈fi, gi〉.

Given ζ ∈ P(Cn+1) we define for f ∈ H(d) the straight line segment ft ∈ H(d),

0 ≤ t ≤ 1, by

ft = f − (1− t)∆
(
〈·, ζ〉di
〈ζ, ζ〉di

)
f(ζ),

where ∆(ai) means the diagonal matrix whose i-th diagonal entry is ai. So

f0(ζ) = 0 and f1 = f . Therefore we may apply homotopy methods to this line

segment.

12



0.1 Complexity of Algorithms and Numerical Analysis

Note that if we restrict f to the affine chart ζ + ζ⊥ then

ft(z) = f(z)− (1− t)f(ζ),

and if we take ζ = (1, 0, . . . , 0) and n = 1 we recover Smale’s algorithm.

Let ft = f − (1 − t)∆
(
〈·,ζ〉di
〈ζ,ζ〉di

)
f(ζ), for t ∈ [0, 1], and ζt the homotopy con-

tinuation of ζ along the path ft.

Suppose η is a non-degenerate zero of f ∈ H(d). We define the basin of η,

B(f, η), as those ζ ∈ P(Cn+1) such that the zero ζ of f0 continues to η for the

homotopy ft.

The main result In Chapter 3 is the following:

The average number of steps to follow the path {(ft, ζt) : t ∈ [0, 1]}
is bounded above by

(I)
CD3/2Γ(n+ 1)2n−1

(2π)Nπn

∫
h∈H(d)

[ ∑
η/ h(η)=0

µ2(h, η)

‖h‖2
Θ(h, η)

]
e−‖h‖

2/2 dh,

where

Θ(h, η) =

∫
ζ∈B(h,η)

(
‖h‖2 − ‖∆(‖ζ‖−di)h(ζ)‖2

)1/2

‖∆(‖ζ‖−di)h(ζ)‖2n−1
·

· Γ(‖∆(‖ζ‖−di)h(ζ)‖2/2, n)e‖∆(‖ζ‖−di )h(ζ)‖2/2 dζ,

and Γ(α, n) =
∫ +∞
α

tn−1e−t dt is the incomplete gamma function.

This result may be helpful for Smale 17th problem and raises more problems

than it solves.

(a) Is (I) finite for all or some n?

(b) Might (I) even be polynomial in N for some range of dimensions and de-

grees?

(c) What are the basins like? Even for n = 1 these are interesting questions.
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The integral

1

(2π)N

∫
h∈H(d)

∑
η/ h(η)=0

µ2(h, η)

‖h‖2
· e−‖h‖2/2 dh ≤ e(n+ 1)

2
D,

where D = d1 · · · dn is the Bézout number (see Bürgisser & Cucker [2011]).

So the question is how does the factor Θ(h, η) affect the integral.

(d) Evaluate or estimate∫
ζ∈P(Cn+1)

1

‖∆(‖ζ‖−di)h(ζ)‖2n−1
· e

1
2
‖∆(‖ζ‖−di )h(ζ)‖2 dζ.

Note that

‖h‖Lp =

(
1

vol(P(Cn+1))

∫
ζ∈P(Cn+1)

‖∆(‖ζ‖−di)h(ζ)‖p dζ
)1/p

,

for p ≥ 1, is a different way to define a norm on h. For p = 2 we get

another unitarily invariant Hermitian structure on H(d), which differs from

the Bombieri-Weyl by

‖h‖2
L2 =

n∑
i=1

di!n!

(di + n)!
‖hi‖2,

(cf. [Dedieu, 2006, page 133])

If the integral in (d) can be controlled, if the integral on the D basins are reason-

ably balanced, the factor of D in (c) may cancel.

See Chapter 3 for more details.

0.1.2.3 Stochastic Perturbations and Smooth Condition Numbers

Recall from previous sections that the condition number, of a computational

problem with inputs (X, 〈·, ·〉x) and outputs (Y, 〈·, ·〉y), at (x, y) ∈ V\Σ′ is defined

as:

µ(x, y) := max
ẋ∈TxX
‖ẋ‖2x=1

‖DS (x, y)ẋ‖y.
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In many practical situations, there exists a discrepancy between worst case

theoretical analysis and observed accuracy of an algorithm. There exist several

approaches that attempt to rectify this discrepancy.

In many problems, the space of inputs has a much larger dimension than

the one of the space of outputs (m � n). Then, it is natural to assume that

infinitesimal perturbations of the input will produce drastic changes in the output

only when they are performed in a few directions. Then, a possibly different

approach to analyze accuracy of algorithms is to replace “worst direction” by a

certain mean over all possible directions. This alternative was already suggested

and studied in Weiss et al. Weiss et al. [1986] in the case of linear system solving

Ax = b, and more generally, in Stewart [1990] in the case of matrix perturbation

theory, where the first-order perturbation expansion is assumed to be random.

In Appendix A, following Armentano [2010], we extend this approach to a large

class of computational problems, restricting ourselves to the case of directionally

uniform perturbations.

Define the pth-stochastic condition number at (x, y) as:

µst
[p](x, y) :=

[
1

vol(Sm−1
x )

∫
ẋ∈Sm−1

x

‖DS (x)ẋ‖py dSm−1
x (ẋ)

]1/p

, (p = 1, 2, . . .),

where vol(Sm−1
x ) = 2πm/2

Γ(m/2)
is the measure of the unit sphere Sm−1

x in TxX, and

dSm−1
x is the induced volume element. We will be mostly interested in the case

p = 2, which we simply write µst and call it stochastic condition number.

Before stating the main theorem, we define the Frobenius condition number

as:

µF (x, y) := ‖DS (x)‖F =
√
σ2

1 + · · ·+ σ2
n

where ‖ · ‖F is the Frobenius norm and σ1, . . . , σn are the singular values of the

condition operator.

The main result in Appendix A is:

The pth-stochastic condition number satisfies

µst
[p](x, y) =

1√
2

[
Γ
(
m
2

)
Γ
(
m+p

2

)]1/p

· E(‖ησ1,...,σn‖p)1/p,
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where ‖·‖ is the Euclidean norm in Rn and ησ1,...,σn is a centered Gaus-

sian vector in Rn with diagonal covariance matrix Diag(σ2
1, . . . , σ

2
n).

In particular, for p = 2

µst(x, y) =
µF (x, y)√

m
.

Since µ(x, y) ≤ µF (x, y) ≤
√
n · µ(x, y), we have from (A.1.3) that

1√
m
· µ(x, y) ≤ µst(x, y) ≤

√
n

m
· µ(x, y).

This result is most interesting when m� n, for in that case µst(x, y)� µ(x, y).

Thus, in these cases one may expect much better stability properties than those

predicted by classical condition numbers.

In Appendix A we prove these results, extending them to the case of pth-

stochastic kth-componentwise condition numbers. We also compute the stochastic

condition number for different problems, namely, systems of linear equations,

eigenvalue and eigenvector problems, finding kernels of linear transformations

and solving polynomial systems of equations.

0.2 Random System of Equations

Let us consider a system of m polynomial equations in m unknowns over a field

K,

fi(x) :=
∑
‖j‖≤di

a
(i)
j x

j (i = 1, . . . ,m).

The notation is the following: x := (x1, . . . , xm) denotes a point in Km, j :=

(j1, . . . , jm) a multi-index of non-negative integers, ‖j‖ =
∑m

h=1 jh, x
j = xj1 · · ·xjm ,

a
(i)
j = a

(i)
j1,...,jm

, and di is the degree of the polynomial fi.

We are interested in the solutions of the system of equations

fi(x) = 0 (i = 1, . . . ,m),
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lying in some subset V of Km. Throughout this second part, we are mainly

concerned with the case K = R or K = C.

If we choose at random the coefficients {a(i)
j }, then the solution of the system

f(x) = 0, becomes a random subset of Km. This is the main object of this second

part of this dissertation.

When we restrict to the case K = R, the simple and fundamental object to

study is the number of solutions of the system lying in some Borel subset V of

Rm. Let us denote by N f (V ) this number.

The study of the expectation of the number of real roots of a random poly-

nomial started in the thirties with the work of Bloch & Pólya [1931]. Further

investigations were made by Littlewood & Offord [1938]. However, the first sharp

result is due to Kac [1943; 1949], who gives the asymptotic value

E
(
N f (R)

)
≈ 2

π
log d, as d→ +∞,

when the coefficients of the degree d univariate polynomial f are Gaussian cen-

tered independent random variables N(0, 1) (see the book by Bharucha-Reid &

Sambandham [1986]).

The first important result in the study of real roots of random system of

polynomial equations is due to Shub & Smale [1993b], where the authors com-

puted the expectation of N f (Rm) when the coefficients are Gaussian centered

independent random variables having variances:

E
[
(a

(i)
j )2

]
=

di!

j1! · · · jm! (di − ‖j‖)!
.

Their result was

E
(
N f (Rm)

)
=
√
d1 · · · dm,

that is, the square root of the Bézout number associated to the system. The

proof is based on a double fibration manipulation of the co-area formula. Some

extensions of their work, including new results for one polynomial in one variable,

can be found in Edelman & Kostlan [1995]. There are also other extensions to
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multi-homogeneous systems in McLennan [2002], and, partially, to sparse systems

in Rojas [1996] and Malajovich & Rojas [2004]. A similar question for the number

of critical points of real-valued polynomial random functions has been considered

in Dedieu & Malajovich [2008].

The probability law of the Shub–Smale model defined above has the simpli-

fying property of being invariant under the action of the orthogonal group in

Rm. In Kostlan [2002] one can find the classification of all Gaussian probability

distributions over the coefficients with this geometric invariant property.

In 2005, Azäıs and Wschebor gave a new and deep insight to this problem.

The key point is using the Rice formula for random Gaussian fields (cf. Azäıs

& Wschebor [2009]). This formula allows one to extend the Shub–Smale result

to other probability distributions over the coefficients. A general formula for

E(N f (V )) when the random functions fi (i = 1, . . . ,m) are stochastically inde-

pendent and their law is centered and invariant under the orthogonal group on

Rm can be found in Azäıs & Wschebor [2005]. This includes the Shub–Smale for-

mula as a special case. Moreover, Rice formula appears to be the instrument to

consider a major problem in the subject which is to find the asymptotic distribu-

tion of N f (V ) (under some normalization). The only published results of which

the author is aware concern asymptotic variances as m → +∞. (See Wschebor

[2008] for a detailed description in this direction).

When the number of equations is less than the numbers of unknowns, generi-

cally, the set of solutions is a real algebraic variety of positive dimension. In this

case, when the coefficients are taken at random, the description of the geome-

try becomes the main problem. In Bürgisser [2006; 2007] the expected value of

certain parameters describing the geometry of this random algebraic variety are

computed.

When we restrict to the case K = C other interesting problems come into

account, even for the case of one variable. For example,

How are the roots of complex random polynomials distributed?

The study of this question is one of the main research activities in the field

of complex random polynomials. At the end of this dissertation we study the

relation of this problem and the complexity of homotopy methods.
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0.2 Random System of Equations

0.2.1 Main Contributions

In this section we introduce the main contributions given in this dissertation

associated to random polynomials.

0.2.1.1 Random System of Polynomials over R

In Chapter 4 we recall some known results concerning the understanding of the set

of solutions of random system of equations from Rice formulas point of view. Al-

most all results of this chapter are known however in this dissertation we develop

a systematic way to analyze these problems with this powerful technic, hoping

that this approach could be used to study other important problems related to

the analysis of random algebraic varieties.

In Chapter 4, we begin giving an outline on Rice formulas for random fields.

In the case of polynomial random fields we show the relation of Rice formulas

with other technics to study the average number of solutions.

We also recall Shub-Smale result and we give a short proof of it based on Rice

formulas.

At the end of this chapter we recall some known results about the undeter-

mined case, that is, when the random system of equations has less equations

than unknowns. More precisely, let us assume now that we have less equations

than variables, that is, let f : Rn → Rk be a random system of polynomials such

that k < n. In this case Z(f1, . . . , fk) = f−1(0) is a random algebraic variety of

positive dimension. A natural questions come into account:

What is the average volume of Z(f1, . . . , fk) ?

At the end of Chapter 4 we show how to attack this problem by means of the

Rice formulas. In Bürgisser [2006] and Bürgisser [2007] one can find a nice study

of this and other important questions concerning geometric properties of random

algebraic varieties from a different point of view.

We will restrict ourselves to the particular case of the Shub-Smale distribution.

Let us consider the random system of k homogeneous polynomial equations in
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0. INTRODUCTION

m+ 1 unknowns f : Rm+1 → Rk, given by

fi(x) :=
∑
‖j‖=di

a
(i)
j x

j, (i = 1, . . . , k).

Assume that this system has the Shub-Smale distribution, that is, {a(i)
j } are

Gaussian, centered, independent random variables having variances

E
[
(a

(i)
j )2

]
=

(
di
j

)
=

di!

j0! · · · jm!
.

Since f is homogeneous, we can restrict to the sphere Sm ⊂ Rm+1 our study

of the random set Z(f1, . . . , fk). Note that, generically, Z(f1, . . . , fk) ∩ Sm is a

smooth manifold of dimension m−k. Let us denote by λm−k the m−k geometric

measure.

Let f : Rm+1 → Rk be the system defined above with the Shub-Smale

distribution. Then, one has

E(λm−k(Z(f1, . . . , fk) ∩ Sm)) =
√
d1 · · · dk vol(Sm−k+1).

This result was first observed by Kostlan [1993] in the particular case d1 =

. . . = dk. We give a proof of this proposition based on the Rice formula for the

geometric measure. We will see that the proof is almost the same as the proof of

Shub-Smale result.

Furthermore, we will see how one can obtain another proof of this theorem

from Shub-Smale result and the fairly known Crofton-Poincare formula of integral

geometry.

Up to now all probability measures were introduced in a particular basis,

namely, the monomial basis {xj}‖j‖≤d. However, in many situations, polynomial

systems are expressed in different basis, such as, orthogonal polynomials, har-

monic polynomials, Bernstein polynomials, etc. So, it is a natural question to

ask:

What can be said about N f (V ) when the randomization is performed

in a different basis?
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0.2 Random System of Equations

For the case of random orthogonal polynomials see Bharucha-Reid & Sam-

bandham [1986], and Edelman & Kostlan [1995] for random harmonic polynomi-

als.

In Chapter 4 following Armentano & Dedieu [2009] we give an answer to the

average number of real roots of a random system of equations expressed in the

Bernstein basis. Let us be more precise:

The Bernstein basis is given by:

bd,k(x) =

(
d

k

)
xk(1− x)d−k, 0 ≤ k ≤ d,

in the case of univariate polynomials, and

bd,j(x1, . . . , xm) =

(
d

j

)
xj11 . . . x

jm
m (1− x1 − . . .− xm)d−‖j‖, ‖j‖ ≤ d,

for polynomials in m variables, where j = (j1, . . . , jm) is a multi-integer, and
(
d
j

)
is the multinomial coefficient.

Let us consider the set of real polynomial systems in m variables,

fi(x1, . . . , xm) =
∑
‖j‖≤di

a
(i)
j bd,j(x1, . . . , xm), (i = 1, . . . ,m).

Take the coefficients a
(i)
j to be independent Gaussian standard random variables.

Define

τ : Rm → P
(
Rm+1

)
by

τ(x1, . . . , xm) = [x1, . . . , xm, 1− x1 − . . .− xm].

Here P (Rm+1) is the projective space associated with Rm+1, [y] is the class of

the vector y ∈ Rm+1, y 6= 0, for the equivalence relation defining this projective

space. The (unique) orthogonally invariant probability measure in P (Rm+1) is

denoted by λm.

With the above notation the following result holds:
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0. INTRODUCTION

1. For any Borel set V in Rm we have

E
(
N f (V )

)
= λm(τ(V ))

√
d1 . . . dm.

In particular

2. E
(
N f
)

=
√
d1 . . . dm,

3. E
(
N f (∆m)

)
=
√
d1 . . . dm/2

m, where

∆m = {x ∈ Rm : xi ≥ 0 and x1 + . . .+ xm ≤ 1} ,

4. When m = 1, for any interval I = [α, β] ⊂ R, one has

E
(
N f (I)

)
=

√
d

π
(arctan(2β − 1)− arctan(2α− 1)) .

Moreover, in Chapter 4 we extend last result on Bernstein polynomial systems.

We give a general formula to compute the expected number of roots of some

random systems of equations.

Let U ⊂ Rm be an open subset, and let ϕ0, . . . , ϕm : U → R be (m + 1)

differentiable functions. Assume that, for every x ∈ U , the values ϕi(x) do not

vanish at the same time. Then we can define the map Λ : U → P(Rm+1) by

Λ(x) = [ϕ0(x), . . . , ϕm(x)].

Let f be the system of m-equations in m real variables

fi(x1, . . . , xm) :=
∑
‖j‖=di

a
(i)
j ϕ0(x)j0 · · ·ϕm(x)jm , (i = 1, . . . ,m),

where x = (x1, . . . , xm) ∈ U .

We denote by N f (U) the number of roots of the system of equations fi(x) =

0, (i = 1, . . . ,m) lying in U .

Then,

Let f be the system of equations given above, where the {a(i)
j } are

independent Gaussian centered random variables with variance
(
di
j

)
.
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0.2 Random System of Equations

Then,

E
[
N f (U)

]
=

√
d1 · · · dm

vol(P(Rm+1))

∫
z∈P(Rm+1)

# Λ−1({z}) dz.

where # ∅ = 0.

We will see how this result extend the previous result on Bernstein polynomials

and we also show some simple non-polynomial examples.

0.2.1.2 Random System of Polynomials over C

In Chapter 5 we study complex random systems of polynomial equations. The

main objective is to introduce the technics of Rice formulas in the realm complex

random fields. At the end we give a probabilistic approach of Bézout’s theorem

using Rice Formulas.

This chapter follows closely a joint work under construction with Federico

Dalmao and Mario Wschebor [Armentano et al., 2012]. The main objective of

this work is to give a probabilistic proof of Bézout’s theorem. More precisely:

Assume that f has the complex analogue of Shub-Smale distribution

and denote by N the number of projective zeros of f . Then,

N = D almost surely,

where D =
∏m

`=1 di is Bézout number.

The proof we have attempted was divided into two steps:

- First prove that the expected value of N is D;

- Secondly, prove that the variance of the random variable N −D is zero.

Both steps can be analyzed with Rice formulas. The first step follows similarly

to the proof of Shub-Smale result for the real case, and is even much simpler. For

the second step we use a version of the Rice formula for the k-moment.

The second step involves many computations. Even though we could not finish

the proof of the second step, we will show how to proceed in the computations

and we will show the main difficulties. On the particular case of m = 1, that is,

the Fundamental Theorem of Algebra, we finish the proof.
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0.2.1.3 Fekete Points and Random Polynomials

In Chapter 6, following Armentano et al. [2011], we see that points in the sphere

associated with roots of Shub-Smale complex analogue random polynomials via

the stereographic projection, are surprisingly well-suited with respect to the mini-

mal logarithmic energy on the sphere. That is, they provide a fairly good approx-

imation to a classical minimization problem over the sphere, namely, the Elliptic

Fekete points problem.

Let us be more precise.

Given x1, . . . , xN ∈ S2 = {x ∈ R3 : ‖x‖ = 1}, let

V (x1, . . . , xN) = ln
∏

1≤i<j≤N

1

‖xi − xj‖
= −

∑
1≤i<j≤N

ln ‖xi − xj‖

be the logarithmic energy of the N -tuple x1, . . . , xN .

Let

VN = min
x1,...,xN∈S2

V (x1, . . . , xN)

denote the minimum of this function. N -tuples minimizing the quantity V are

usually called Elliptic Fekete Points. The problem of finding (or even approxi-

mate) such optimal configurations is a classical problem (see Whyte [1952] for its

origins).

During the last decades this problem has attracted much attention, and the

number of papers concerning it has grown amazingly. The reader may see Kui-

jlaars & Saff [1998] for a nice survey.

In the list of Smale’s problems for the XXI Century Smale [2000], problem

number 7 reads:

Can one find x1, . . . , xN ∈ S2 such that

V (x1, . . . , xN)− VN ≤ c lnN,

c a universal constant?

More precisely, Smale demands a real number algorithm in the sense of Blum

et al. [1998] that with input N returns a N -tuple x1, . . . , xN satisfying last in-

equality, and such that the running time is polynomial on N .

24



0.2 Random System of Equations

One of the main difficulties when dealing with this problem is that the value

of VN is not even known up to logarithmic precision. In Rakhmanov et al. [1994]

the authors proved that if one defines CN by

(*) VN = −N
2

4
ln

(
4

e

)
− N lnN

4
+ CNN,

then,

−0.112768770... ≤ lim inf
N→∞

CN ≤ lim sup
N→∞

CN ≤ −0.0234973...

Let X1, . . . , XN be independent random variables with common uniform dis-

tribution over the sphere. One can easily show that the expected value of the

function V (X1, . . . , XN) in this case is,

(**) E(V (X1, . . . , XN)) = −N
2

4
ln

(
4

e

)
+
N

4
ln

(
4

e

)
.

Thus, this random choice of points in the sphere with independent uniform distri-

bution already provides a reasonable approach to the minimal value VN , accurate

to the order of O(N lnN).

On one side, this probability distribution has an important property, namely,

invariance under the action of the orthogonal group on the sphere. However, on

the other hand this probability distribution lacks on correlation between points.

More precisely, in order to obtain well-suited configurations one needs some kind

of repelling property between points, and in this direction independence is not

favorable. Hence, it is a natural question whether other handy orthogonally in-

variant probability distributions may yield better expected values. Here is where

complex random polynomials comes into account!

Given z ∈ C, let

ẑ :=
(z, 1)

1 + |z|2
∈ C× R ∼= R3

be the associated points in the Riemann Sphere, i.e. the sphere of radius 1/2

centered at (0, 0, 1/2). Finally, let

X = 2ẑ − (0, 0, 1) ∈ S2
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be the associated points in the unit sphere.

Given a polynomial f in one complex variable of degree N , we consider the

mapping

f 7→ V (X1, . . . , XN),

where Xi (i = 1, . . . , N) are the associated roots of f in the unit sphere. Notice

that this map is well defined in the sense that it does not depend on the way we

choose to order the roots.

The main contribution of Chapter 6 is the following:

Let f(z) =
∑N

k=0 akz
k be a complex random polynomial, such that the

coefficients ak are independent complex random variables, such that

the real and imaginary parts of ak are independent (real) Gaussian

random variables centered at 0 with variance
(
N
k

)
. Then, with the

notations above,

E (V (X1, . . . , XN)) = −N
2

4
ln

(
4

e

)
− N lnN

4
+
N

4
ln

4

e
.

Comparing this result with equations (*) and (**), we see that the value of

V is surpringsingly small at points coming from the solution set of this random

polynomials. More precisely, necessarily many random realizations of the coeffi-

cients will produce values of V below the average and very close to VN , possibly

close enough to satisfy the inequality in Smale’s 7th problem.

Notice that, taking the homogeneous counterpart of f , our main result can

be restated for random homogeneous polynomials and considering its complex

projective solutions, under the identification of P(C2) with the Riemann sphere.

In this fashion, the induced probability distribution over the space of homoge-

neous polynomials in two complex variables corresponds to the classical unitarily

invariant Hermitian structure of the respective space (see Blum et al. [1998]).

Therefore, the probability distribution of the roots in P(C2) is invariant under

the action of the unitary group.

It is not difficult to prove that the unitary group action over P(C2) correspond

to the special orthogonal group of the unit sphere. Hence, the distribution of the

associated random roots on the sphere is orthogonally invariant. Thus, our main
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0.2 Random System of Equations

result is another geometric confirmation of the repelling property of the roots of

this Gaussian random polynomials.

Part of the motivation of 7th Problem of Smale is the search for a polynomial

all of whose roots are well conditioned, in the context of Shub & Smale [1993c].

Shub & Smale [1993b] proved that well-conditioned polynomials are highly

probable. In Shub & Smale [1993c] the problem was raised as to how to write a

deterministic algorithm which produces a polynomial g all of whose roots are well-

conditioned. It was also realized that a polynomial whose projective roots (seen

as points in the Riemann sphere) have logarithmic energy close to the minimum

as in Smale’s problem after scaling to S2, are well conditioned.

From the point of view of Shub & Smale [1993c], the ability to choose points at

random already solves the problem. Here, instead of trying to use the logarithmic

energy function V (·) to produce well-conditioned polynomials, we use the fact

that random polynomials are well-conditioned, to try to produce low-energy N -

tuples.
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Complexity of Path-Following

Methods
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Chapter 1

Complexity of The Eigenvalue

Problem I: Geodesics in the

Condition Metric

In this chapter we study path-following methods for the eigenvalue problem. We

introduce a projective framework to analyze this problem. We define a condition

number and a Newton’s map appropriate for this context, proving a version of

the γ-Theorem. The main result of this chapter is to bound the complexity of

path-following methods in terms of the length of the path in the condition metric.

This chapter follows closely Armentano [2011a].

1.1 Introduction and Main Results

1.1.1 Introduction

In this chapter we study the complexity of path-following methods to solve the

eigenvalue problem:

(λIn − A)v = 0, v 6= 0,

where A ∈ Kn×n (K = R or C), v ∈ Kn, λ ∈ K. Classical algorithms for solving

the eigenvalue problem may be divided into two classes: QR methods (including

Hessenberg reduction, single or double shift strategy, deflation), and Krylov sub-
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space methods; see Wilkinson [1965], Golub & Van Loan [1996], Stewart [2001],

Watkins [2007].

Surprisingly, the complexity of the eigenvalue problem is still an open problem.

It may be formulated in the following terms: given an algorithm designed to solve

the eigenvalue problem,

1. For which class of matrices does it converge ?

2. What is the average number of steps, in a given probabilistic model on the

set of inputs, to obtain a given accuracy on the output ?

The two following examples show that such questions are particularly difficult:

• QR algorithm with Wilkinson’s single shift diverges for a non-empty open

set of matrices (see Batterson & Smillie [1989a;b]).

• QR algorithm is convergent for almost every complex matrix. However,

even for the choice of Gaussian Orthogonal Ensemble, as a probabilistic

model, question (2) remains unanswered (see Deift [2008]).

In this chapter we consider the eigenvalue problem as a bilinear polynomial

system of equations and we consider homotopy methods to solve it. The system

(λIn − A)v = 0, v 6= 0, is the endpoint of a path of problems

(λ(t)In − A(t))v(t) = 0, v(t) 6= 0, 0 ≤ t ≤ 1,

with (A(1), λ(1), v(1)) = (A, λ, v). Starting from a known triple (A(0), λ(0), v(0))

we “follow” this path to reach the target system (λIn−A)v = 0. The algorithmic

way to do so is to construct a finite number of triples

(Ak, λk, vk), 0 ≤ k ≤ K,

with Ak = A(tk), and 0 = t0 < t1 < . . . < tK = 1, and where λk, vk are

approximations of λ(tk), v(tk). The complexity of this algorithm (defined more

precisely below) is measured by the number K of steps sufficient to validate this

approximation. In this chapter we relate K with a geometric invariant, namely,

the condition length of the path.
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We begin with the geometric framework of our problem. Since the eigenvalue

problem is homogeneous in v ∈ Kn and also in (A, λ) ∈ Kn×n ×K, we define the

solution variety as

V =:
{

(A, λ, v) ∈ P
(
Kn×n ×K

)
× P (Kn) : (λIn − A)v = 0

}
,

where P(E) denotes the projective space associated with the vector space E. We

speak interchangeably of a non zero vector and its corresponding class in the

projective space.

Note that the solution variety V differs from the definition given Subsection

0.1.1.

1.1.2 A Bihomogeneous Newton’s Method

Given a non-zero matrix A ∈ Kn×n, we define the evaluation map FA : K×Kn →
Kn, by

FA(λ, v) := (λIn − A)v.

Associated to FA we define NA : K× (Kn − {0})→ K×Kn, given by

NA(λ, v) := (λ, v)−
(
DFA(λ, v)|K×v⊥

)−1
FA(λ, v), (1.1.1)

defined for all (λ, v) such that DFA(λ, v)|K×v⊥ is surjective. Here v⊥ is the Hermi-

tian complement of v in Kn. This map is homogeneous of degree 1 in v, therefore,

NA induces a map from K× P(Kn) into itself.

We define the Newton map N on (Kn×n − {0n})×K× (Kn − {0}) by

N(A, λ, v) :=
(
A,NA(λ, v)

)
.

This map N is a bihomogeneous map of degree 1 in (A, λ) and v. Hence N is

well-defined on P
(
Kn×n ×K

)
× P(Kn) (see Section 1.4).

Given A ∈ Kn×n, A 6= 0n, and (λ0, v0) ∈ K×Kn, v0 6= 0, the Newton sequence

associated to A is defined by

(A, λk+1, vk+1) := N(A, λk, vk), k ≥ 0.
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We say that this sequence converges immediately quadratically to a solution of

the eigenvalue problem (A, λ, v) ∈ V when

dP2 ((A, λk, vk), (A, λ, v)) ≤
(

1

2

)2k−1

· dP2 ((A, λ0, v0), (A, λ, v)) ,

for all positive integer k. Here dP2(·, ·) is the induced Riemannian distance on

P
(
Kn×n ×K

)
× P(Kn) (see Section 1.2.1). In that case we say that (A, λ0, v0) is

an approximate solution of the eigenvalue problem (A, λ, v) ∈ V.

1.1.3 The Predictor-Corrector Algorithm

Let Γ(t) = (A(t), λ(t), v(t)), a ≤ t ≤ b, be a representative path in V. To

approximate the path Γ by a finite sequence we use the following predictor-

corrector strategy: given a mesh a = t0 < t1 < . . . < tK = b and a triple

(A(t0), λ0, v0) ∈ Kn×n ×K×Kn, (v0 6= 0), we define

(A(tk+1), λk+1, vk+1) := N(A(tk+1), λk, vk), 0 ≤ k ≤ K − 1,

(in case the Newton map is defined). We say that the sequence (A(tk), λk, vk),

0 ≤ k ≤ K, approximates the path Γ(t), a ≤ t ≤ b, when, for any k =

0, . . . , K, (A(tk), λk, vk) is an approximate solution of the eigentriple Γ(tk) =

(A(tk), λ(tk), v(tk)) ∈ V. In that case we define the complexity of the sequence by

K.

1.1.4 Condition of a Triple and Condition Length

Let W ⊂ V be the set of well-posed problems, that is the set of triples (A, λ, v) ∈ V

such that λ is a simple eigenvalue (see Section 1.3). In that case, for a fixed

representative (A, λ, v) ∈ V, the operator Πv⊥(λIn − A)|v⊥ is invertible, where

Πv⊥ denotes the orthogonal projection of Kn onto v⊥. The condition number of

(A, λ, v) is defined by

µ(A, λ, v) := max
{

1, ‖A‖F · ‖Πv⊥(λIn − A)|v⊥−1‖
}
, (1.1.2)
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where ‖ · ‖F and ‖ · ‖ are the Frobenius and operator norms in the space of

matrices. We also let µ(A, λ, v) =∞ when (A, λ, v) ∈ V−W; (see Section 1.3).

When Γ(t), a ≤ t ≤ b, is an absolutely continuous path in W, we define its

condition-length as

`µ(Γ) :=

∫ b

a

∥∥∥Γ̇(t)
∥∥∥

Γ(t)
· µ (Γ(t)) dt, (1.1.3)

where
∥∥∥Γ̇(t)

∥∥∥
Γ(t)

is the norm of Γ̇(t) in the unitarily invariant Riemannian struc-

ture on V (see Section 1.2.1).

1.1.5 Main Results

The main theorem concerning the convergence of Newton’s iteration is the fol-

lowing.

Theorem 1. There is a universal constant u0 > 0 with the following property.

Let (A, λ, v), (A, λ0, v0) ∈ P
(
Kn×n ×K

)
× P(Kn). If (A, λ, v) ∈W and

dP2 ((A, λ0, v0), (A, λ, v)) <
u0

µ(A, λ, v)
,

then, (A, λ0, v0) is an approximate solution of (A, λ, v).

(One may choose u0 = 0.0739).

Theorem 1 is a version of the so called γ-theorem (see Blum et al. [1998]),

which gives the size of the basin of attraction of Newton’s method. Different

versions of the γ-theorem for the symmetric eigenvalue problem and for the gen-

eralized eigenvalue problem are given in Dedieu [2006] and Dedieu & Shub [2000]

respectively.

Theorem 1 is the main ingredient to prove complexity results for path-following

methods.

The proof of Theorem 1 follows from a version of the γ-theorem for the map

NA : K× P(Kn)→ K× P(Kn) which is interesting in itself (see Section 1.4).

Following these lines our main result is:

35



1. COMPLEXITY OF THE EIGENVALUE PROBLEM I:
GEODESICS IN THE CONDITION METRIC

Theorem 2. There is a universal constant C > 0 such that for any absolutely

continuous path Γ in W, there exists a sequence which approximates Γ, and such

that the complexity of the sequence is

K ≤ C `µ(Γ) + 1.

(One may choose C = 120).

The proof of Theorem 2 is given in Section 1.5.

1.1.6 Comments

In their seminal paper [Shub & Smale, 1993a], Shub and Smale relate, in the

context of polynomial system solving, the complexity K to three ingredients: the

degree of the considered system, the length of the path Γ(t), and the condition

number of the path. Precisely, they obtain the complexity

K ≤ CD3/2`(Γ)µ(Γ)2),

where C is a universal constant, D is the degree of the system, `(Γ) is the length of

Γ in the associated Riemannian structure, and µ(Γ) = supa≤t≤b µ (Γ(t)). Similar

results for the generalized eigenvalue problem were obtained in Dedieu & Shub

[2000].

In Shub [2009] the complexity K of path-following methods for the polynomial

system solving problem is analyzed in terms of the condition length of the path.

In the context of polynomial system solving, the eigenvalue problem may be

considered as a quadratic system of equations. However, Shub & Smale [1993a]

and Shub & Smale [1996] do not apply since the eigenvalue problem as a quadratic

system belongs to the subset of ill-posed problems of generic quadratic systems.

(See Li [1997]). Therefore, in order to analyze the complexity of the eigenvalue

problem, a different framework is required. Here we consider the eigenvalue

problem as a bilinear problem (see Subsection 1.2.2.1).

The approach considered in this chapter is greatly inspired by Shub [2009].
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Note: Throughout this chapter we will work with K = C. However most defini-

tions and results can be extended immediately to the case K = R. Whenever it

is necessary we shall state the difference.

1.2 Riemannian Structures and the Solution Va-

riety

In this section we define the canonical metric structures and study some basic

topological and algebraic properties of the solution variety for the eigenvalue

problem.

1.2.1 Canonical Metric Structures

The space Kn is equipped with the canonical Hermitian inner product 〈·, ·〉. The

space Kn×n is equipped with the Frobenius Hermitian inner product

〈A,B〉F := trace (B∗A),

where B∗ denotes the adjoint of B.

In general, if E is a finite dimensional vector space over K with the Hermi-

tian inner product 〈·, ·〉, we can define an Hermitian structure over P(E) in the

following way: for x ∈ E,

〈w,w′〉x :=
〈w,w′〉
‖x‖2

,

for all w, w′ in the Hermitian complement x⊥ of x in E, which is a natural

representative of the tangent space TxP(E). Let dP(x, y) be the angle between

the vectors x and y.

The space P
(
Kn×n ×K

)
× P(Kn) inherits the Hermitian product structure

‖(Ȧ, λ̇, v̇)‖2
(A,λ,v) = ‖(Ȧ, λ̇)‖2

(A,λ) + ‖v̇‖2
v (1.2.1)

for all (Ȧ, λ̇, v̇) ∈ (A, λ)⊥ × v⊥.

We denote by dP2(·, ·) the induced Riemannian distance on P
(
Kn×n × K

)
×

P(Kn).
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Throughout this chapter we denote by the same symbol dP distances over

P(Kn), P(Kn×n) and P(Kn×n ×K).

1.2.2 The Solution Variety V

Recall that the solution variety V ⊂ P
(
Kn×n ×K

)
× P(Kn) is given by the set of

triples (A, λ, v) such that (λIn − A)v = 0. Note that V is the set of equivalence

classes of the set {F = 0}, where F : Kn×n × K × (Kn − {0}) → Kn is the

multihomogenous system of polynomials given by

F (A, λ, v) = (λIn − A)v. (1.2.2)

Therefore V is an algebraic subvariety of the product P
(
Kn×n × K

)
× P(Kn).

Moreover, since 0 is a regular value of F , we conclude that V is also a smooth

submanifold of P
(
Kn×n ×K

)
× P(Kn). Its dimension over K is given by

dimV = dim(Kn×n ×K×Kn)− n− 2 = n2 − 1.

The tangent space T(A,λ,v)V to V at (A, λ, v) is the set of triples

(Ȧ, λ̇, v̇) ∈ Kn×n ×K×Kn,

satisfying

(λ̇In − Ȧ)v + (λIn − A)v̇ = 0; 〈Ȧ, A〉F + λ̇λ = 0; 〈v̇, v〉 = 0. (1.2.3)

Remark 1.2.1. The solution variety V inherits the Hermitian structure from

P
(
Kn×n ×K

)
× P(Kn) defined in (1.2.1).

We denote by π1 and π2 the restriction to V of the canoncial projections onto

P
(
Kn×n ×K

)
and P(Kn) respectively.

Note that π1(V) ⊂ P
(
Kn×n ×K

)
does not include the pair (0n, 1). Therefore

we can define the map

π : V→ P(Kn×n), π := p ◦ π1,
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1.2 Riemannian Structures and the Solution Variety

where p is the canonical projection

p : P
(
Kn×n ×K

)
− {(0n, 1)} → P(Kn×n), p(A, λ) = A. (1.2.4)

V

P
(
Kn×n ×K

)
− {(0n, 1)} P(Kn)

P(Kn×n)

π1

π

π2

p

The derivative

Dπ(A, λ, v) : T(A,λ,v)V→ TAP(Kn×n), (1.2.5)

is a linear operator between spaces of equal dimension.

Definition 1. We say that the triple (A, λ, v) ∈ V is well-posed when Dπ(A, λ, v)

is an isomorphism. Let W be the set of well-posed triples, and Σ′ := V −W be

the ill-posed variety. Let Σ = π(Σ′) ⊂ P(Kn×n) be the discriminant variety, i.e.

the subset of ill-posed inputs.

Lemma 1.2.1. Σ′ is the set of triples (A, λ, v) ∈ V such that λ is not a simple

eigenvalue.

Proof. The linear operator (1.2.5) is given by

Dπ(A, λ, v)(Ȧ, λ̇, v̇) = Ȧ+
λ̇ · λ
‖A‖2

F

· A, (Ȧ, λ̇, v̇) ∈ T(A,λ,v)V.

According to (1.2.3), a non-trivial triple in the kernel of Dπ(A, λ, v) has the form

( −λ̇·λ‖A‖2F
A, λ̇, v̇), where 〈v̇, v〉 = 0, v̇ 6= 0, and

λ̇

(
1 +

|λ|2

‖A‖2
F

)
v + (λIn − A)v̇ = 0.

Then, rank[(λIn − A)2] < n− 1.
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Corollary 1. Σ′ is an algebraic subvariety of V.

Remark 1.2.2. When K = C, by the Main Therorem of elimination theory (cf.

[Mumford, 1976, pp. 33]) and the fact that the projection p is Zariski-closed

(cf. [Mumford, 1976, Corollary 2.28]), we conclude from Corollary 1 that Σ is an

algebraic subvariety of P(Kn×n).

Remark 1.2.3. The solution variety V is connected since each (A, λ, v) ∈ V can

be connected by a path (in V) with a triple of the form (vv∗, ‖v‖2, v) ∈ V. Here

v∗ is the conjugate transpose of v.

Lemma 1.2.2. (i) When K = C, W is connected.

(ii) When K = R, W has two connected components.

Proof. (i) Since V is connected, the result follows from Corollary 1 and the fact

that a complex algebraic subvariety of V cannot disconnect it (cf. [Blum et al.,

1998, pp. 196]).

(ii) It is enough to prove the lemma in the affine case. Let V̂ and Ŵ be the affine

spaces associated to V and W. Let ϕ : V̂ → Rn × Rn×n be the continuous map

given by ϕ(A, λ, v) = (v, λIn − A). Define the subsets

L := {(w,M) ∈ Rn × Rn×n : Mw = 0}

and

B := {(w,M) ∈ L : rank(M + wwT ) = n}.

Note that ϕ projects V̂ onto L, and therefore L is connected. Moreover ϕ(Ŵ) =

B. The second assertion follows from the fact that Πw⊥M |w⊥ = Πw⊥(M +

wwT )|w⊥ , for all (w,M) ∈ L.

Note that, for all (w,M) ∈ B, ϕ−1(w,M) = {(M + αIn, α, w) : α ∈ R} is a one

dimensional subspace of Ŵ. Therefore, the set B̂ := {(M, 0, w) : (w,M) ∈ B} is

a deformation retract of Ŵ. It is clear that B̂ and B are homeomorphic.

Then, the lemma follows from the fact that B has two connected component

on L.
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1.2.2.1 Multidegree of V

In this item we will see that the bilinear approach considered in this chapter gives

the correct number of roots of the eigenvalue problem.

For the sake of simplicity in the exposition, we will restrict ourself to the case

K = C. This subsection follows closely D’Andrea et al. [2011].

Since V is an algebraic subvariety of the product space P
(
Cn×n×C

)
×P(Cn),

there is a natural algebraic invariant associated to V, namely, the multidegree of

V. This invariant is given by the numbers deg(n2−1−i,i)(V), i = 0, . . . , n−1, where

deg(n2−1−i,i)(V) is the number of points of intersection of V with the product

Λ × Λ′ ⊂ P
(
Cn×n × C

)
× P(Cn), where Λ ⊂ P

(
Cn×n × C

)
and Λ′ ⊂ P(Cn) are

generic (n2 − 1− i)-codimension plane and i-codimension plane respectively (see

Fulton [1984]).

Lemma 1.2.3. deg(n2−1−i,i)(V) =
(
n
i+1

)
for i = 0, . . . , n− 1.

In order to give a proof of this lemma we recall some definitions from inter-

section theory (cf. Fulton [1984]). (See also D’Andrea et al. [2011]).

The Chow ring of P
(
Cn×n × C

)
× P(Cn) is the graded ring

A∗
(
P
(
Cn×n × C

)
× P(Cn)

)
= Z[ω1, ω2]/(ωn

2+1
1 , ωn2 ),

where ω1 and ω2 denotes the rational equivalence classes of the inverse images of

hyperplanes of P
(
Cn×n × C

)
and P(Cn), under the projections P

(
Cn×n × C

)
×

P(Cn)→ P
(
Cn×n × C

)
and P

(
Cn×n × C

)
× P(Cn)→ P(Cn) respectively.

Given a codimension n algebraic subvariety X ⊂ P
(
Cn×n × C

)
× P(Cn), the

class of X in the Chow ring is

[X] =
n−1∑
i=0

deg(n2−1−i,i)(X)ωi+1
1 ωn−1−i

2 ∈ A∗
(
P
(
Cn×n × C

)
× P(Cn)

)
.

Proof of Lemma 1.2.3. Let Fi, (i = 1, . . . , n), be the coordinate functions of F

defined in (1.2.2). Since Fi is bilinear for each i, we have that the class of {Fi =

0} ⊂ P
(
Cn×n × C

)
× P(Cn) is given by

[{Fi = 0}] = ω1 + ω2 ∈ A∗
(
P
(
Cn×n × C

)
× P(Cn)

)
, (i = 1, . . . , n).
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Then, the class of V in the Chow ring is

[V] = [{F1 = 0} ∩ · · · ∩ {Fn = 0}] =
n∏
i=1

[{Fi = 0}],

where the last equality follows from Bézout identity. Therefore, one gets

[V] = (ω1 + ω2)n ≡
n∑
`=1

(
n

`

)
ω`1ω

n−`
2 ,

that is

deg(n2−1−i,i)(V) =

(
n

i+ 1

)
.

Proposition 1.2.1. For all A ∈ P(Cn×n)−Σ we have #π−1(A) = deg(n2−1,0)(V) =

n.

Proof. Since P(Cn×n) − Σ is connected, the number of preimages under π is

constant on it. From Lemma 1.2.1 we get that the restriction π1|V−Σ′ : V−Σ′ →
P
(
Cn×n × C

)
is a bijective map onto its image π1(V − Σ′). Therefore, given

A ∈ P(Kn×n) − Σ, we have #π−1(A) = #p|π1(V)
−1(A), where p is the projection

map given in (1.2.4). Moreover, from [Mumford, 1976, Corollary 5.6], we get that

#p|π1(V)
−1(A) = deg π1(V), where deg is the degree of the projective algebraic

subvariety π1(V) ⊂ P
(
Cn×n × C

)
. Since dimπ1(V) = dim(V) and the fact that

π1|V−Σ′ : V − Σ′ → π1(V − Σ′) is bijective, we get that #(Λ × P(Cn)) ∩ V =

#Λ ∩ π1(V), for a generic (n2 − 1)-codimension plane Λ ⊂ P
(
Cn×n × C

)
. Then,

we obtain that deg π1(V) = deg(n2−1,0)(V).

Remark 1.2.4. From this proposition we get that the map π|V−π−1(Σ) : V −
π−1(Σ)→ P(Cn×n)− Σ is a n-fold covering map.

1.2.2.2 Unitary Invariance

Let Un(K) stand for the unitary group when K = C or the orthogonal group when

K = R. The group Un(K) acts on P(Kn) in the natural way, and acts on Kn×n

by sending A 7→ UAU−1. Moreover if (A, λ, v) ∈ V, then (UAU−1, λ, Uv) ∈ V.
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Thus, V is invariant under the product action Un(K)× V→ V given by

U · (A, λ, v) 7→ (UAU−1, λ, Uv), U ∈ Un(K). (1.2.6)

Remark 1.2.5. Note that the group Un(K) preserves the Hermitian structure on

V, therefore Un(K) acts by isometries on V.

1.3 Condition Numbers

In this section we introduce the eigenvalue and eigenvector condition numbers,

and we define the condition number for the eigenvalue problem. We will discuss

the condition number theorem for this framework, which relates the condition

number with the distance to ill-posedness. In the last part of this section we

study the rate of change of condition numbers.

1.3.1 Eigenvalue and Eigenvector Condition Numbers

When (A, λ, v) belongs to W, according to the implicit function theorem, π

has an inverse defined in some neighborhood UA ⊂ P(Kn×n) of A such that

π−1(A) = (A, λ, v). This map S = π−1|UA : UA → V is called the solution map.

It associates to any matrix B ∈ UA the eigentriple (B, λB, vB) close to (A, λ, v).

Its derivative

DS (A, λ, v) : TAP(Kn×n)→ T(A,λ,v)V,

is called the condition operator at (A, λ, v).

If (A, λ, v) ∈W, the derivativeDS (A, λ, v) associates to each Ḃ ∈ TAP(Kn×n)

a triple (Ȧ, λ̇, v̇) satisfying (1.2.3). Moreover, equation (1.2.3) defines two linear

maps,

DSλ(A, λ, v)Ḃ = (Ȧ, λ̇) and DSv(A, λ, v)Ḃ = v̇,

namely, the condition operators of the eigenvalue and eigenvector respectively.

Lemma 1.3.1. Let (A, λ, v) ∈W. Then for Ḃ ∈ TAP(Kn×n), one gets:
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(i)

DSλ(A, λ, v)Ḃ =
(
Ḃ − λ̇ λ

‖A‖2
F

A, λ̇
)
, where λ̇ =

〈Ḃv, u〉(
1 + |λ|2

‖A‖2F

)
〈v, u〉

;

(ii)

DSv(A, λ, v)Ḃ = Πv⊥(λIn − A)|v⊥−1
(

Πv⊥(Ḃv)
)
,

where u ∈ Kn is a left eigenvector of A with eigenvalue λ: a non-zero vector

satisfying (λIn − A)∗u = 0.

Proof. (i): Note that the relation between Ḃ ∈ A⊥ and (Ȧ, λ̇) ∈ (A, λ)⊥ is given

by

Ḃ = Ȧ+
λ̇ · λ
‖A‖2

F

A. (1.3.1)

Moreover, from (1.2.3) we get 〈Ȧv, u〉 = λ̇〈v, u〉, i.e.

λ̇ =
〈Ȧv, u〉
〈v, u〉

. (1.3.2)

From (1.3.1) and (1.3.2) follows

λ̇ =
1

1 + |λ|2
‖A‖2F

〈Ḃv, u〉
〈v, u〉

.

(ii): From (1.2.3) again one gets

v̇ = Πv⊥(λIn − A)|v⊥−1
(

Πv⊥(Ȧv)
)
.

Since Πv⊥(Ḃv) = Πv⊥(Ȧv) by (1.3.1), the result follows.

Since P(Kn×n) is equipped with the canonical Hermitian structure induced by

the Frobenius Hermitian product on Kn×n, the condition numbers of the eigen-
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value and eigenvector are given by

µλ(A, λ, v) = sup
Ḃ∈A⊥

‖Ḃ‖F=‖A‖F

‖DSλ(A, λ, v)Ḃ‖(A,λ)

µv(A, λ, v) = sup
Ḃ∈A⊥

‖Ḃ‖F=‖A‖F

‖DSv(A, λ, v)Ḃ‖v

Proposition 1.3.1. Let (A, λ, v) ∈W. Then

(i)

µλ(A, λ, v) =
1

1 + |λ|2
‖A‖2F

·
[
1 +
‖v‖2 · ‖u‖2

|〈v, u〉|2

]1/2

;

(ii)

µv(A, λ, v) = ‖A‖F · ‖Πv⊥(λIn − A)|v⊥−1‖,

where ‖ · ‖ is the operator norm.

Remark 1.3.1. Πv⊥(λIn − A)|v⊥ is a linear map from the Hermitian complement

of v in Kn into itself. Hence the operator norm of its inverse is independent of

the representative of v.

Proof. (i): From Lemma 1.3.1,

‖DSλ(A, λ, v)Ḃ‖2
(A,λ) =

‖Ḃ‖2
F + |λ̇|2

(
1 + |λ|2

‖A‖2F

)
‖A‖2

F + |λ|2

=
‖Ḃ‖2

F +
∣∣∣ 〈Ḃv,u〉〈v,u〉

∣∣∣2 (1 + |λ|2
‖A‖2F

)−1

‖A‖2
F + |λ|2

.

(1.3.3)

Then, the proof of (i) can be deduced from the following result:

sup
Ḃ∈A⊥

‖Ḃ‖F=‖A‖F

∣∣∣〈Ḃv, u〉∣∣∣ = ‖A‖F ·

√
‖v‖2 · ‖u‖2 − |λ|

2

‖A‖2
F

· |〈v, u〉|2.

(The proof is left to the reader).

45



1. COMPLEXITY OF THE EIGENVALUE PROBLEM I:
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(ii): Since Av = λv, we have Πv⊥(Ḃv) = Πv⊥((Ḃ + αA)v), for any α ∈ K and

Ḃ ∈ A⊥. Then, from Lemma 1.3.1 we get:

µv(A, λ, v) = sup
Ḃ∈A⊥

‖Ḃ‖F=‖A‖F

∥∥∥Πv⊥(λIn − A)|v⊥−1
(

Πv⊥(Ḃv)
)∥∥∥

v

= sup
Ḃ∈Kn×n
‖Ḃ‖F=1

‖A‖F ·
∥∥∥Πv⊥(λIn − A)|v⊥−1

(
Πv⊥(Ḃv)

)∥∥∥
v
.

Since {Πv⊥(Ḃv) : Ḃ ∈ Kn×n, ‖Ḃ‖F = 1} fill the ball of radius ‖v‖ in v⊥, the

result follows.

Corollary 2. µλ and µv are invariant under the action of Un(K).

Remark 1.3.2. Let (A, λ, v) ∈ W. If (λIn − A)∗v = 0, that is, if v is also a left

eigenvector of A with eigenvalue λ, then,

µλ(A, λ, v) =

√
2

1 + |λ|2
‖A‖2F

.

In particular, this is the case when A is normal, i.e. A∗A = AA∗. On the other

hand, µv happens to be more interesting since, roughly speaking, it measures how

close to λ others eigenvalues are.

Lemma 1.3.2. Let A ∈ P(Kn×n) be a normal matrix. If (A, λ, v) ∈W then

µv(A, λ, v) =
‖A‖F

mini |λ− λi|
,

where the minimum is taken for λi eigenvalue of A different from λ.

Proof. Since A is normal, by the unitary invariance of µv, we may assume that A

is the diagonal matrix Diag(λ, λ2, . . . , λn), where λ, λi are the eigenvalues of A.

Moreover, since (A, λ, v) ∈ W, λ 6= λi for i = 2, . . . n. Then, the result follows

from Proposition 1.3.1.

1.3.2 Condition Number Revisited

The condition number of a computational problem is usually defined as the op-

erator norm of the map giving the first order variation of the output in terms of
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the first order variation of the input. In our case the condition number should be

the operator norm of the condition operator DS (A, λ, v) given in Section 1.3,

i.e.

‖DS (A, λ, v)‖ := sup
Ḃ∈A⊥

‖Ḃ‖F=‖A‖F

‖DS (A, λ, v)Ḃ‖(A,λ,v).

Note that this quantity is bounded below by µv(A, λ, v) and above by (µλ(A, λ, v)2+

µv(A, λ, v)2)1/2. However, in spite of this definition, we define the condition num-

ber of the eigenvalue problem in the following way.

Definition 2 (Condition Number). The condition number of the eigenvalue prob-

lem is defined by

µ(A, λ, v) := max{1, µv(A, λ, v)}. (1.3.4)

In the next proposition we show that this definition and the usual one are

essentially equivalent.

Proposition 1.3.2. Let (A, λ, v) ∈W. Then

1√
2
· µ(A, λ, v) ≤ ‖DS (A, λ, v)‖ ≤ 2 · µ(A, λ, v)

The proof follows from the next lemma.

Lemma 1.3.3. Let (A, λ, v) ∈W. Then,

(i) µv(A, λ, v) ≥ 1/
√

2;

(ii)

µλ(A, λ, v) ≤ 1

1 + |λ|2
‖A‖2F

· (2 + µv(A, λ, v)2)1/2.

Proof. Fix a representative of (A, λ, v) ∈W such that ‖v‖ = 1.

(i): One has,

‖Πv⊥(λIn − A)|v⊥‖ ≤ ‖Πv⊥(A)|v⊥‖+ |λ| ≤
√

2‖A‖F ,

that is, ‖Πv⊥(λIn − A)|v⊥‖ ≤
√

2. Therefore,

1 = ‖ (Πv⊥(λIn − A)|v⊥)−1 Πv⊥(λIn − A)|v⊥‖ ≤
√

2µv(A, λ, v).
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(ii): Since the action of Un(K) on P(Kn) is transitive, we may assume that v is

the first element of the canonical basis. Then A has the form

(
λ w

0 Â

)
, where

w ∈ K1×(n−1) and Â ∈ K(n−1)×(n−1). Then A − λIn =

(
0 w

0 Â− λIn−1

)
. Note

that u = (1,−(Â − λIn−1)−∗w∗)T is solution of (A − λIn)∗u = 0, i.e. u is a

left eigenvector. Here, ·T and ·∗ denotes the transpose and conjugate transpose

respectively. Then,

|〈v, u〉|
‖v‖ · ‖u‖

=
1√

1 + ‖(Â− λIn−1)
−∗
w∗‖2

≥ 1√
1 + ‖(Â− λIn−1)−1‖2 · ‖w‖2

≥ 1√
1 + ‖(Â− λIn−1)−1‖2 · ‖A‖2

F

=
1√

1 + µv(A, λ, v)2
.

The result now follows from Proposition 1.3.1.

The next subsection is included for the sake of completeness but is not needed

for the proof of our main results.

1.3.3 Condition Number Theorems

In this subsection we study the relation of µλ(A, λ, v), µv(A, λ, v) and µ(A, λ, v)

with the distance of (A, λ, v) to Σ′. The main result in this subsection is that

µ(A, λ, v) is bounded above by sin(dP2(A, λ, v),Σ′))−1.

Let (E, 〈·, ·〉) be a finite dimensional Hermitian vector space over K. Given Λ

a projective subset in P(E), we denote by Λ̂ ⊂ E its affine extension.

Lemma 1.3.4. Given x ∈ E, x 6= 0, we have

sin(dP(x,Λ)) =
dE(A, Λ̂)

‖x‖
,

where dE is the distance generated by 〈·, ·〉.
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Proof. The proof is straightforward.

The next proposition is a version, adapted to this context, of known results

given by Wilkinson [1972]) and Shub & Smale [1996] .

Recall that Σ = π(Σ′) ⊂ P(Kn×n).

Proposition 1.3.3. Let (A, λ, v) ∈W. Then

(i)

µλ(A, λ, v) ≤

√
2

sin(dP(A,Σ))2
+ 1;

(ii)

µv(A, λ, v) =
‖A‖F

dF (A, Σ̂v + λIn)
,

where Σv = {B ∈ P(Kn×n) : (B, 0, v) ∈ Σ′} ⊂ Σ.

Proof. (i) Let Σ̂ ⊂ Kn×n be the affine extension of Σ in Kn×n, and let u be a left

eigenvector associated to A with eigenvalue λ. Wilkinson shows that:

‖v‖ · ‖u‖
|〈v, u〉|

≤
√

2
‖A‖F

dF (A, Σ̂)
,

(cf. Demmel [1988], Wilkinson [1972]). Then, (i) follows from Proposition 1.3.1

and Lemma 1.3.4.

(ii) In Shub & Smale [1996] it is proved that, for a fixed triple (A, λ, v) ∈ V,

dF (λIn − A, Σ̂v) =
1

‖Πv⊥(λIn − A)|v⊥−1‖
.

Then, (ii) follows from Lemma 1.3.1.

Corollary 3. For (A, λ, v) ∈W, we get

µ(A, λ, v) ≤ 1

sin(dP(A,Σ))
.

Proof. Since Σ̂v + αIn ⊂ Σ̂ for all α ∈ K, we conclude from Lemma 1.3.4 that:

µv(A, λ, v) ≤ 1

sin(dP(A,Σ))
.
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Moveover, since the second member is greater than one, the proof follows.

Proposition 1.3.4. For (A, λ, v) ∈W, we get

µ(A, λ, v) ≤ 1

sin(dP2 ((A, λ, v),Σ′))
.

Proof. Let Σ′′v := {(B, η) ∈ P(Kn×n × K) : (B, η, v) ∈ Σ′}, and Σ̂′′v its affine

extension in Kn×n ×K. Note that

dKn×n×K((A, λ), Σ̂′′v) = dF (A− λIn, Σ̂v),

where Σv is defined in Proposition 1.3.3. Then, from Proposition 1.3.3, we get

dKn×n×K((A, λ), Σ̂′′v) =
‖A‖F

µv(A, λ, v)
.

Since π−1
1 (Σ′′v) ⊂ Σ′, we get

dP2 ((A, λ, v),Σ′) ≤ dP2

(
(A, λ, v), π−1

1 (Σ′′v)
)

= dP((A, λ),Σ′′v)).

Then, the result follows from the fact that sin(·) ≤ 1.

1.3.4 Condition Number Sensitivity

For the proof of Theorem 2 we have to study the rate of change of the condition

number µ defined in (1.3.4).

The main result of this subsection is the following.

Proposition 1.3.5. Given ε > 0, there exist Cε > 0 such that, if (A, λ, v),

(A′, λ′, v′) belongs to W and

dP2

(
(A, λ, v), (A′, λ′, v′)

)
<

Cε
µ(A, λ, v)

then
µ(A, λ, v)

1 + ε
≤ µ(A′, λ′, v′) ≤ (1 + ε)µ(A, λ, v).
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(One may choose Cε =
arctan

(
ε

2
√

2+
√

2α(1+ε)

)
(1+ε)

, where α := (1 +
√

5)2
√

2).

Before proving Proposition 1.3.5 we need some additional notation.

When E is a finite dimensional vector space over K equipped with the Hermi-

tian inner product 〈·, ·〉, we define

dT (w,w′) := tan(dP(w,w′)), (1.3.5)

for all w, w′ ∈ P(E). We have

dT (w,w′) = ‖w − w′‖w,

whenever w and w′ satisfy 〈w − w′, w〉 = 0.

Note that dP(·, ·) ≤ dT (·, ·). Moreover, we have:

Lemma 1.3.5. Let w, w′ ∈ P(E) such that dP(w,w′) ≤ θ < π/2. Then

dP(w,w′) ≤ dT (w,w′) ≤ tan(θ)

θ
· dP(w,w′), for all w, w′ ∈ P(E).

Proof. This follows from elementary facts.

Given w ∈ Kn, w 6= 0, we define for any B ∈ Kn×n the map

Π̂w⊥B : Kn → Kn, by Π̂w⊥B := τ ◦ Πw⊥B,

where τ : w⊥ → Kn is the inclusion map. That is,

Π̂w⊥Bz = Bz − 〈Bz, w

‖w‖
〉 w
‖w‖

.

Since
(

Π̂v⊥(λIn − A)
)
v = 0 for all (A, λ, v) ∈W, then we have

µv(A, λ, v) = ‖A‖F ·
∥∥Πv⊥(λIn − A)|v⊥−1

∥∥
= ‖A‖F ·

∥∥∥∥(Π̂v⊥(λIn − A)
)†∥∥∥∥ ,

where † is the Moore-Penrose inverse.
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Lemma 1.3.6. Let v, w ∈ P(Kn) and B ∈ Kn×n. Then∥∥∥Π̂v⊥B − Π̂w⊥B
∥∥∥ ≤ 2‖B‖ · dT (v, w).

Proof. Take representatives of v and w such that ‖v‖ = 1 and 〈v−w, v〉 = 0. Let

u ∈ Kn, then∥∥∥(Π̂v⊥B − Π̂w⊥B
)
u
∥∥∥ =

∥∥∥∥Bu− 〈Bu, v〉v − (Bu− 〈Bu, w

‖w‖
〉 w
‖w‖

)∥∥∥∥
=

∥∥∥∥〈Bu, w

‖w‖
〉 w
‖w‖

− 〈Bu, v〉v
∥∥∥∥

≤
∥∥∥∥〈Bu, w

‖w‖
− v〉 w
‖w‖

+ 〈Bu, v〉
(

w

‖w‖
− v
)∥∥∥∥

≤ 2‖Bu‖ ·
∥∥∥∥ w

‖w‖
− v
∥∥∥∥ ≤ 2‖Bu‖ · dT (v, w).

Let dT 2 be the product function defined over P
(
Kn×n ×K

)
× P(Kn) by

dT 2((A, λ, v), (A′, λ′, v′)) :=
(
dT ((A, λ), (A′, λ′))2 + dT (v, v′)2

)1/2

Proposition 1.3.6. Let α := (1 +
√

5)2
√

2.

Let (A, λ, v), (A′, λ′, v′) ∈W such that

dT 2

(
(A, λ, v), (A′, λ′, v′)

)
<

1

α · µv(A, λ, v)
.

Then, the following inequality holds:

µv(A
′, λ′, v′) ≤

(1 +
√

2dT 2

(
(A, λ, v), (A′, λ′, v′)

)
) · µv(A, λ, v)

1− α · µv(A, λ, v) · dT 2

(
(A, λ, v), (A′, λ′, v′)

) .
Proof. Consider representatives of (A, λ, v) and (A′, λ′, v′) such that: ‖A‖F =

‖v‖ = 1, (A, λ)− (A′, λ′) perpendicular to (A, λ) in Kn×n×K, and v− v′ perpen-

dicular to v in Kn.

Notation: for short, let Aλ := (λIn − A) and A′λ′ := (λ′In − A′).
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By Wedin’s Theorem (see Stewart & Sun [1990], Theorem 3.9) we have∥∥∥∥(Π̂v⊥Aλ

)†
−
(

Π̂v′⊥A
′
λ′

)†∥∥∥∥ ≤
1 +
√

5

2
·
∥∥∥∥(Π̂v⊥Aλ

)†∥∥∥∥ · ∥∥∥∥(Π̂v′⊥A
′
λ′

)†∥∥∥∥ · ∥∥∥Π̂v⊥Aλ − Π̂v′⊥A
′
λ′

∥∥∥ .
Since

∣∣∣∣∥∥∥∥(Π̂v⊥Aλ

)†∥∥∥∥− ∥∥∥∥(Π̂v′⊥A
′
λ′

)†∥∥∥∥∣∣∣∣ ≤ ∥∥∥∥(Π̂v⊥Aλ

)†
−
(

Π̂v′⊥A
′
λ′

)†∥∥∥∥, then,

∥∥∥∥(Π̂v′⊥A
′
λ′

)†∥∥∥∥ ≤
∥∥∥∥(Π̂v⊥Aλ

)†∥∥∥∥
1− 1+

√
5

2
·
∥∥∥∥(Π̂v⊥Aλ

)†∥∥∥∥ · ∥∥∥Π̂v⊥Aλ − Π̂v′⊥A
′
λ′

∥∥∥ .
Note that∥∥∥Π̂v⊥Aλ − Π̂v′⊥A

′
λ′

∥∥∥ ≤ ∥∥∥Π̂v⊥Aλ − Π̂v′⊥Aλ

∥∥∥+
∥∥∥Π̂v′⊥Aλ − Π̂v′⊥A

′
λ′

∥∥∥
≤ 2 · ‖Aλ‖ · dT (v, v′) + ‖Aλ − A′λ′‖,

where the second inequality follows from Lemma 1.3.6. Moreover, taking into

account that (A, λ, v) ∈W and the choice of elected representatives, we get

‖Aλ − A′λ′‖ ≤ ‖A− A′‖+ |λ− λ′|

≤
√

2 · dT ((A, λ), (A′, λ′)) ·
√
‖A‖2

F + |λ|2

≤ 2 · dT ((A, λ), (A′, λ′)),

and hence ∥∥∥Π̂v⊥Aλ − Π̂v′⊥A
′
λ′

∥∥∥ ≤ 4 · dT (v, v′) + 2 · dT ((A, λ), (A′, λ′)).
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Then we conclude∥∥∥∥(Π̂v′⊥A
′
λ′

)†∥∥∥∥ ≤ ∥∥∥∥(Π̂v⊥Aλ

)†∥∥∥∥
1− (1 +

√
5)2
√

2 ·
∥∥∥∥(Π̂v⊥Aλ

)†∥∥∥∥ · dT 2((A, λ, v), (A′, λ′, v′))

.

The proposition follows from the following fact: ‖A′‖F ≤ 1 + ‖A − A′‖F ≤
1 +
√

2dT ((A, λ), (A′, λ′)).

Proposition 1.3.7. Given ε > 0, there exist cε > 0 such that, if (A, λ, v),

(A′, λ′, v′) ∈W and

dT 2

(
(A, λ, v), (A′, λ′, v′)

)
<

cε
µ(A, λ, v)

,

then,

µ(A′, λ′, v′) ≤ (1 + ε)µ(A, λ, v).

(One may choose cε = ε
2
√

2+
√

2α(1+ε)
, where α = (1 +

√
5)2
√

2.)

Proof. It is enough to prove the assertion for µv instead of µ.

Recall from Lemma 1.3.3 that µv is bounded below by 1/
√

2. Hence,

dT 2

(
(A, λ, v), (A′, λ′, v′)

)
<

c

µ(A, λ, v)
,

implies

dT 2

(
(A, λ, v), (A′, λ′, v′)

)
<

√
2 c

µv(A, λ, v)
.

From Proposition 1.3.6, if c is such that
√

2c < 1/α and

1 + 2
√

2c

1−
√

2αc
< 1 + ε,

we get the result.

One may choose cε =
ε

2
√

2 +
√

2α(1 + ε)
.
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Corollary 4. Given ε > 0, there exist c′ε > 0 such that, if (A, λ, v), (A′, λ′, v′) ∈
W and

dP2

(
(A, λ, v), (A′, λ′, v′)

)
<

c′ε
µ(A, λ, v)

,

then,

µ(A′, λ′, v′) ≤ (1 + ε)µ(A, λ, v).

(One may choose c′ε = arctan
(

ε
2
√

2+
√

2α(1+ε)

)
where α := (1 +

√
5)2
√

2.)

Proof. By Lemma 1.3.4, if

dP2

(
(A, λ, v), (A′, λ′, v′)

)
<

c′

µ(A, λ, v)
,

then

dT 2

(
(A, λ, v), (A′, λ′, v′)

)
≤ tan(c′)

c′
· dP2

(
(A, λ, v), (A′, λ′, v′)

)
<

tan(c′)

µ(A, λ, v)
,

proving the lemma.

Proof of Proposition 1.3.5. From Corollary 4, there exist c′ > 0 such that, if

(A, λ, v), (A′, λ′, v′) ∈W are such that

dP2

(
(A, λ, v), (A′, λ′, v′)

)
· µ(A, λ, v) < c′,

then

µ(A′, λ′, v′) ≤ (1 + ε)µ(A, λ, v).

It is enough to take c′ such that c′ ≤ arctan
(

ε
2
√

2+
√

2α(1+ε)

)
. In this case we have

dP2

(
(A, λ, v), (A′, λ′, v′)

)
· µ(A′, λ′, v′) < c′(1 + ε).

Then, by the same argument, if c′(1 + ε) ≤ arctan
(

ε
2
√

2+
√

2α(1+ε)

)
we have the

other inequality.
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1.4 Newton’s Method

In this section we start describing the Newton method defined in the Introduction.

The main goal of this section is to prove Theorem 1.

1.4.1 Introduction

Let us recall the definition of the Newton map on P
(
Kn×n × K

)
× P(Kn). We

define

N(A, λ, v) :=
(
A,NA(λ, v)

)
,

where NA is the Newton map, given in (1.1.1), associated to the evaluation map

FA(λ, v) = (λIn − A)v, for a fixed (non-zero) matrix A and (λ, v) ∈ K×Kn.

Note that NA has the simple matrix expression

NA

(
λ

v

)
=

(
λ

v

)
−

(
v λIn − A
0 v∗

)−1(
(λIn − A)v

0

)
.

To compute the Newton map we have to solve for (λ̇, v̇) ∈ K×Kn the following

linear system:

λ̇v + (λIn − A)v̇ = (λIn − A)v,

〈v̇, v〉 = 0.

Then one gets:

Lemma 1.4.1. If Πv⊥(λIn − A)|v⊥ is invertible, then the Newton iteration is

given by

N(A, λ, v) = (A, λ− λ̇, v − v̇),

where
v̇ =

(
Πv⊥(λIn − A)

∣∣
v⊥

)−1
Πv⊥(λIn − A)v,

λ̇ =
〈(λIn − A)(v − v̇), v〉

〈v, v〉
.

From Lemma 1.4.1, we conclude that N is a well-defined map on the product

space P
(
Kn×n×K

)
×P(Kn). Moreover, for a fixed matrix A ∈ Kn×n, A 6= 0n, we

conclude also that the map NA is well-defined on K× P(Kn).
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1.4.2 γ-Theorem

In order to prove Theorem 1 and Theorem 2 we need to obtain a version of the

γ-Theorem for the Newton map NA : K× P(Kn)→ K× P(Kn).

Proposition 1.4.1. Let 0 < u ≤ 1/(2
√

2).

Let (A, λ, v) ∈W such that ‖A‖F = 1, and let (λ0, v0) ∈ K× P(Kn).

If

(|λ0 − λ|2 + dP(v0, v)2)1/2 <
u

µ(A, λ, v)
,

then, the Newton sequence (λk, vk) := Nk
A(λ0, v0) satisfies

(|λk − λ|2 + dP(vk, v)2)1/2 ≤
(

2 tan(u)

1−
√

2u

)
·
(

1

2

)2k−1

· (|λ0 − λ|2 + dP(v0, v)2)1/2,

for all k > 0.

This proposition will be the main tool to prove Theorem 1 and also Theorem

2. It is a version -for the Newton map NA- of a fairly known theorem in the

literature, namely, the γ-Theorem, which gives the size of the basin of attraction

of Newton’s method. In our case, for the Newton map NA reads:

Theorem 3. There is a universal constant c0 > 0 with the following property.

Let (A, λ, v) ∈W such that ‖A‖F = 1, and (λ0, v0) ∈ K× P(Kn). If

(|λ0 − λ|2 + dP(v0, v)2)1/2 <
c0

µ(A, λ, v)
,

then, the sequence (λk, vk) = Nk
A(λ0, v0) converges immediately quadratically to

(λ, v) with respect to the canonical distance in K× P(Kn).

(One may choose c0 = 0.288).

Since we do not find an appropriate place to refer to this version, we include

a proof of the Proposition 1.4.1 in the Appendix. Note that the proof of Theorem

3 follows directly from Proposition 1.4.1 picking u such that: 0 < u ≤ 1/(2
√

2)

and 2 tan(u)/(1−
√

2u) ≤ 1.
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1.4.3 Proof of Theorem 1

Preliminaries

Lemma 1.4.2. Fix a representative of (A, λ, v) ∈ V such that ‖A‖F = 1 and

‖v‖ = 1. Let (λ′, v′) ∈ K× P(Kn).

1. If |λ− λ′| ≤ c <
√

2, then,

dP2

(
(A, λ, v), (A, λ′, v′)

)
≤ βc ·

(
|λ− λ′|2 + dP(v, v′)2

)1/2
,

where βc = (1− c2/2)−1/2.

2. If dP2

(
(A, λ, v), (A, λ′, v′)

)
< θ < π/4, then,

(|λ− λ′|2 + dT (v, v′)2)1/2 ≤ Rθ · dP2((A, λ.v), (A, λ′, v′)),

where Rθ = [
√

2/ cos(θ + π/4)3]1/2.

The proof of Lemma 1.4.2 is included in the Appendix.

Let θ0 such that Rθ0 θ0 = 1/(2
√

2), where Rθ is given in Lemma 1.4.2 (θ0

≈ 0.1389).

Proposition 1.4.2. Let 0 < u ≤ θ0.

Let (A, λ, v), (A, λ0, v0) ∈ P
(
Kn×n ×K

)
× P(Kn). If (A, λ, v) ∈W and

dP2

(
(A, λ, v), (A, λ0, v0)

)
<

u

µ(A, λ, v)
,

then

dP2

(
Nk(A, λ0, v0), (A, λ, v)

)
≤

≤ Ru βuRu

(
2 tan(uRu)

1−
√

2uRu

)
·
(

1

2

)2k−1

dP2

(
(A, λ, v), (A, λ0, v0)

)
,

for all k > 0, where δ(u) := u/(1− u).

Proof. With out loss of generality we may assume ‖A‖F = 1 and ‖v‖ = 1.
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By Lemma 1.4.2 we get

(|λ0 − λ|2 + dP(v0, v)2)1/2 ≤ uRu

µ(A, λ, v)
. (1.4.1)

Since u ≤ θ0, we have uRu ≤ 1/(2
√

2), and then from Proposition 1.4.1 and

Proposition 1.6.2, we get

(|λk − λ|2 + dP(vk, v)2)1/2 ≤(
2 tan(uRu)

1−
√

2uRu

)
·
(

1

2

)2k−1

· (|λ0 − λ|2 + dP(v0, v)2)1/2, (1.4.2)

for all k > 0, where (λk, vk) := Nk
A(λ0, v0) . Moreover, since (|λ0 − λ|2 +

dP(v0, v)2)1/2 < uRu, we deduce from Lemma 1.4.2 that

dP2(Nk(A, λ0, v0), (A, λ, v)) ≤

≤ βuRu

(
2 tan(uRu)

1−
√

2uRu

)
·
(

1

2

)2k−1

· (|λ0 − λ|2 + dP(v0, v)2)1/2

≤ Ru βuRu

(
2 tan(uRu)

1−
√

2uRu

)
·
(

1

2

)2k−1

· dP2((A, λ0, v0), (A, λ, v)).

(Note that u ≤ θ0 <
π
4
.)

Proof of Theorem 1

Proof of Theorem 1. From Proposition 1.4.2, proof of Theorem 1 follows picking

u0 > 0 such that u0 ≤ θ0 and Ru0 βu0 Ru0

(
2 tan(u0Ru0 )

1−
√

2u0 Ru0

)
≤ 1. One may choose

u0 = 0.0739.
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1.5 Proof of the Main Theorem

1.5.1 Complexity Bound

In the introduction we defined the condition length of an absolutely continuous

path Γ : [a, b]→W as

`µ(Γ) =

∫ b

a

‖Γ̇(t)‖Γ(t) µ(Γ(t)) dt.

The next proposition is useful for our Main Theorem 2.

Proposition 1.5.1. Given ε > 0, Cε > 0 as in Proposition 1.3.5, and Γ :

[a, b]→W an absolutely continuous path with `µ(Γ) <∞, define the real sequence

{sk}k=0,...,K in [a, b] such that:

•s0 = a;

•sk such that µ(Γ(sk−1))
∫ sk
sk−1
‖Γ̇(t)‖Γ(t)dt = Cε,

whenever µ(Γ(sk−1))
∫ b
sk−1
‖Γ̇(t)‖Γ(t)dt > Cε;

• else define sk = sK = b.

Then,

K ≤ 1 + ε

Cε
`µ(Γ) + 1.

Proof. Given s ∈ [sk−1, sk], dP2(Γ(sk−1),Γ(s)) ≤
∫ sk
sk−1
‖Γ̇(t)‖Γ(t)dt ≤ µ(Γ(sk−1))−1Cε.

By the first inequality in Proposition 1.3.5, we get∫ sk

sk−1

‖Γ̇(t)‖Γ(t)µ(Γ(t)) dt ≥ µ(Γ(sk−1))

1 + ε

∫ sk

sk−1

‖Γ̇(t)‖Γ(t)dt =
Cε

1 + ε
,

whenever k < K. Since `µ(Γ) <∞, K <∞, and adding, yields

`µ(Γ) ≥ (K − 1)
Cε

1 + ε
.

1.5.2 Proof of the Main Theorem 2

Proof of Theorem 2: Let A(t), a ≤ t ≤ b, be a representative path of the projec-

tion π(Γ) ⊂ P(Kn×n) such that ‖A(t)‖F = 1 for a ≤ t ≤ b.
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1.5 Proof of the Main Theorem

Given a mesh a = t0 < t1 < . . . < tK = b, for k = 0, 1, . . . , K, let Γ̂(tk) =

(A(tk), λk, vk) ∈ Kn×n × K × P(Kn), be the sequence described in Section 1.1.3.

Then, if Γ(tk), Γ̂(tk), Γ(tk+1) are such that,

dP2(Γ(tk),Γ(tk+1)) <
Cε

µ(Γ(tk))
, and dP2(Γ(tk), Γ̂(tk)) <

Cε
µ(Γ(tk))

,

then,

dP2(Γ(tk+1), (A(tk+1), λk, vk)) ≤
≤ dP2(Γ(tk+1),Γ(tk)) + dP2(Γ(tk), Γ̂(tk)) +

dP2(Γ̂(tk), (A(tk+1), λk, vk))

≤ 2Cε
µ(Γ(tk))

+ dP2(Γ̂(tk), (A(tk+1), λk, vk)).

Note that

dP2(Γ̂(tk), (A(tk+1), λk, vk)) = dP((A(tk), λk), (A(tk+1), λk)).

Since ‖A(t)‖F = 1, a ≤ t ≤ b, then, abusing notation, we get

dP((A(tk), λk), (A(tk+1), λk)) ≤ dP(A(tk), A(tk+1)),

where the inequality follows from a direct application of the law of cosines. More-

over,

dP(A(tk), A(tk+1)) ≤
∫ tk+1

tk

‖Ȧ(t)‖A(t) dt

≤
√

2

∫ tk+1

tk

‖DSλ(Γ(t))Ȧ(t)‖(A(t),λ(t)) dt

≤
√

2

∫ tk+1

tk

‖Γ̇(t)‖Γ(t) dt,

where the second inequality follows from the trivial lower bound which one may

obtain from (1.3.3).
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Assuming
∫ tk+1

tk
‖Γ̇(t)‖Γ(t) dt ≤ Cε/µ(Γ(tk)) we conclude

dP2(Γ(tk+1), (A(tk+1), λk, vk)) ≤
(2 +

√
2)Cε

µ(Γ(tk))
.

Since dP2(Γ(tk),Γ(tk+1)) < Cε
µ(Γ(tk))

, from Proposition 1.3.5 we get

dP2(Γ(tk+1), (A(tk+1), λk, vk)) ≤
(1 + ε)(2 +

√
2)Cε

µ(Γ(tk+1))
.

From Proposition 1.4.2, if u := (1 + ε)Cε(2 +
√

2) ≤ θ0, then

dP2(N(A(tk+1), λk, vk)),Γ(tk+1)) ≤

≤ Ru βuRu

(
2 tan(uRu)

1−
√

2uRu

)
1

2
· dP2(Γ(tk+1), (A(tk+1), λk, vk))

≤
Ru βuRu

(
2 tan(uRu)

1−
√

2uRu

)
1
2
u

µ(Γ(tk+1))
.

Then, if ε is small enough such that u ≤ θ0 and Ru βuRu

(
2 tan(uRu)

1−
√

2uRu

)
1
2
u < Cε,

we get that Γ̂(tk+1) is an approximate solution of the eigenvalue problem Γ(tk+1).

Then, the proof of Theorem 2 can be deduced applying Proposition 1.5.1 to the

ε selected before.

Remark 1.5.1. One can take ε = 0.2448. Then, Cε ≈ 0.010383, and one can

choose C = 120.

1.6 Appendix

This section is divided in two parts. In the first one we include a proof of Propo-

sition 1.4.1. In the second part we prove Lemma 1.4.2.

Proof of Proposition 1.4.1

Throughout this subsection, when ever we fix a representative of (A, λ, v) ∈ W

such that ‖A‖F = 1 and ‖v‖ = 1, we will consider the canonical Hermitian
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structure on K×Kn.

Preliminaries and Technical Lemmas

Lemma 1.6.1. Let (A, λ, v) ∈W and v′ ∈ P(Kn) such that dP(v, v′) < π/2.

1) Let Πv⊥ |v′⊥ : v′⊥ → v⊥ be the restriction of the orthogonal projection Πv⊥ of

Kn onto v′⊥. Then,

‖ (Πv⊥ |v′⊥)−1 ‖ =
1

cos(dP(v, v′))
.

2) Pick a representative of (A, λ, v) ∈W such that ‖A‖F = 1 and ‖v‖ = 1. Then,

(i)

‖
(
DFA(λ, v)|K×v′⊥

)−1 ·DFA(λ, v)|K×v⊥‖ =
1

cos(dP(v, v′))
;

(ii)

‖
(
DFA(λ, v)|K×v′⊥

)−1 ‖ ≤ ‖ (DFA(λ, v)|K×v⊥)−1 ‖
cos(dP(v, v′))

.

Remark 1.6.1. In part 2) and 3) of the preceding lemma, we consider the spaces

K×v⊥ and K×v′⊥ as subspaces of K×Kn with the canonical Hermitian structure.

Proof. 1): Follows by elementary computations.

2)- (i): For (λ̇, v̇) ∈ K× v⊥, let (η̇, ẇ) ∈ K× v′⊥ such that(
η̇, ẇ

)
=
(
DFA(λ, v)|K×v′⊥

)−1 ·DFA(λ, v)|K×v⊥(λ̇, v̇).

Then,

η̇v + (λIn − A)ẇ = λ̇v + (λIn − A)v̇.

Since (A, λ, v) ∈ W, we deduce that η̇ = λ̇ and Πv⊥ẇ = v̇. Then, we conclude

that (
DFA(λ, v)|K×v′⊥

)−1 ·DFA(λ, v)|K×v⊥(λ̇, v̇) =
(
λ̇, (Πv⊥|v′⊥)−1(v̇)

)
.

Taking norms, and maximizing on the unit sphere in K× v⊥, (i) follows from 1).
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2)-(ii): Note that

‖
(
DFA(λ, v)|K×v′⊥

)−1 ‖ ≤
‖
(
DFA(λ, v)|K×v′⊥

)−1 ·DFA(λ, v)|K×v⊥‖ · ‖ (DFA(λ, v)|K×v⊥)−1 ‖,

then apply 2)-(i).

Lemma 1.6.2. Let (A, λ, v) ∈ Kn×n×K×Kn such that ‖A‖F = 1 and ‖v‖ = 1,

then ‖D2FA(λ, v)‖ ≤ 1.

Proof. Differentiating two times FA, we get

D2FA(λ, v)(λ̇, ẇ)(η̇, u̇) = λ̇u̇+ η̇ẇ, for all (λ̇, ẇ), (η̇, u̇) ∈ K×Kn.

Then,

‖D2FA(λ, v)(λ̇, ẇ)(η̇, u̇)‖ ≤ |λ̇| · ‖u̇‖+ |η̇| · ‖ẇ‖
≤ (|λ̇|2 + ‖u̇‖2)1/2 · (|η̇|2 + ‖ẇ‖2)1/2,

where the second inequality follows from Cauchy-Schwarz.

We recall the fairly known Neumann Lemma (or Banach Lemma):

Lemma 1.6.3 (Neumann Lemma). Let E be a Hermitian space, and A, IE : E→
E be linear operators where IE is the identity. If ‖A−IE‖ < 1, then A is invertible

and

‖A−1‖ ≤ 1

1− ‖A− IE‖
.

Proposition 1.6.1. Let 0 < u ≤ 1/(2
√

2).

Let (A, λ, v) ∈W, such that ‖A‖F = 1, ‖v‖ = 1, and (λ0, v0) ∈ K× P(Kn). If

(|λ0 − λ|2 + dT (v0, v)2)1/2 <
u∥∥DFA (λ, v) |K×v⊥−1

∥∥ ,
then the Newton sequence (λk, vk) := Nk

A(λ0, v0) satisfies

(|λk − λ|2 + dT (vk, v)2)1/2 ≤
√

2 · δ(
√

2u) ·
(

1

2

)2k−1

· (|λ0 − λ|2 + dT (v0, v)2)1/2,
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for all k > 0, where δ(u) := u/(1− u).

Proof. Take a representative of v0 such that 〈v − v0, v0〉 = 0. Note that ‖v0‖ ·
dT (v, v0) = ‖v − v0‖ and ‖v0‖ ≤ 1.

In particular, the hypothesis implies that

‖DFA(λ, v)|K×v⊥−1‖ · ‖(λ0 − λ, v0 − v)‖ < u.

Taylor’s expansion of FA and DFA in a neighborhood of (λ, v) are given by

FA(λ′, v′) = DFA(λ, v)(λ′ − λ, v′ − v) +
1

2
·D2FA(λ, v)(λ′ − λ, v′ − v)2, (1.6.1)

and

DFA(λ′, v′) = DFA(λ, v) +D2FA(λ, v)(λ′ − λ, v′ − v). (1.6.2)

One has(
DFA(λ, v)

∣∣
K×v0

⊥

)−1

·DFA(λ0, v0)
∣∣
K×v0

⊥ − IK×v0
⊥ =

=
(
DFA(λ, v)

∣∣
K×v0

⊥

)−1

·
(
DFA(λ0, v0)

∣∣
K×v0

⊥ −DFA(λ, v)
∣∣
K×v0

⊥

)
=

(
DFA(λ, v)

∣∣
K×v0

⊥

)−1

·D2FA(λ, v))(λ0 − λ, v0 − v)
∣∣
K×v0

⊥ .

Then, taking norms, we get∥∥∥∥(DFA(λ, v)
∣∣
K×v0

⊥

)−1

·DFA(λ0, v0)
∣∣
K×v0

⊥ − IK×v0
⊥

∥∥∥∥ ≤
≤

∥∥DFA(λ, v)|K×v0
⊥
−1
∥∥ · ∥∥D2FA(λ, v))(λ0 − λ, v0 − v)

∥∥
≤ 1

cos(dP(v, v0))
·
∥∥DFA(λ, v)|K×v⊥−1

∥∥ · ‖(λ0 − λ, v0 − v)‖,

where the last inequality follows from Lemma 1.6.1 and Lemma 1.6.2.

In the range of angles under consideration ‖v0‖ = cos(dP(v, v0)) ≥ 1/
√

2. Then,

by the condition 0 < u ≤ 1/(2
√

2) we can deduce from Lemma 1.6.3 that
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DFA(λ0, v0)
∣∣
K×v0

⊥ is invertible and∥∥∥∥(DFA(λ0, v0)
∣∣
K×v0

⊥

)−1

·DFA(λ, v)
∣∣
K×v0

⊥

∥∥∥∥ ≤ (1.6.3)

≤ 1

1− 1
cos(dP(v,v0))

·
∥∥DFA(λ, v)|K×v⊥−1

∥∥ · ‖(λ0 − λ, v0 − v)‖
.

Moreover,

NA(λ0, v0)− (λ, v)

= (λ0 − λ, v0 − v)−
(
DFA(λ0, v0)

∣∣
K×v0

⊥

)−1

· FA(λ0, v0)

=
(
DFA(λ0, v0)

∣∣
K×v0

⊥

)−1

·

·
(
DFA(λ0, v0)

∣∣
K×v0

⊥(λ0 − λ, v0 − v)− FA(λ0, v0)
)
.

Then, from (1.6.1) we get

NA(λ0, v0)− (λ, v) =

=
1

2
·
(
DFA(λ0, v0)

∣∣
K×v0

⊥

)−1

·D2FA(λ, v)(λ0 − λ, v0 − v)2.

Taking the canonical norm in K×Kn, we get

‖NA(λ0, v0)− (λ, v)‖ ≤

≤ 1

2
·
∥∥DFA(λ0, v0)|K×v0

⊥
−1
∥∥ · ‖D2FA(λ, v)(λ0 − λ, v0 − v)2‖.

Then, from (1.6.3) and Lemma 1.6.1 we get

‖NA(λ0, v0)− (λ, v)‖ ≤

≤
√

2 ·
∥∥DFA(λ, v)|K×v⊥−1

∥∥ · 1
2
· ‖D2FA(λ, v)(λ0 − λ, v0 − v)2‖.

1−
√

2 ·
∥∥DFA(λ, v)|K×v⊥−1

∥∥ · ‖(λ0 − λ, v0 − v)‖
(1.6.4)
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Therefore, from Lemma 1.6.2, yields

‖NA(λ0, v0)− (λ, v)‖ ≤

≤
√

2 ·
∥∥DFA(λ, v)|K×v⊥−1

∥∥ · ‖(λ0 − λ, v0 − v)‖
1−
√

2 ·
∥∥DFA(λ, v)|K×v⊥−1

∥∥ · ‖(λ0 − λ, v0 − v)‖
· 1

2
‖(λ0 − λ, v0 − v)‖.

Then,

‖NA(λ0, v0)− (λ, v)‖ ≤

≤
√

2 ·
∥∥DFA(λ, v)|K×v⊥−1

∥∥ · (|λ0 − λ|2 + dT (v0, v)2)1/2

1−
√

2 ·
∥∥DFA(λ, v)|K×v⊥−1

∥∥ · (|λ0 − λ|2 + dT (v0, v)2)1/2
·

· 1

2
(|λ0 − λ|2 + dT (v0, v)2)1/2.

Let (λ1, v1) := NA(λ0, v0).

From the proof of Lemma 1.6.2 we have D2FA(λ, v)(λ0 − λ, v0 − v)2 = 2(λ0 −
λ)(v0 − v), then, from (1.6.4) one can deduce that ‖v1 − v‖ < δ(

√
2u)‖v0 − v‖,

where δ(u) = u/(1 − u). Since u ≤ 1/(2
√

2), we have δ(
√

2u) ≤ 1, then from

Lemma 2, (4) of Blum et al. [1998] (page 264) we get

dT (v1, v) ≤ ‖v1 − v‖
‖v0‖

≤
√

2 · ‖v1 − v‖.

Hence

(|λ1 − λ|2 + dT (v1, v)2)1/2 ≤

≤
2 ·
∥∥DFA(λ, v)|K×v⊥−1

∥∥ · (|λ0 − λ|2 + dT (v0, v)2)1/2

1−
√

2 ·
∥∥DFA(λ, v)|K×v⊥−1

∥∥ · (|λ0 − λ|2 + dT (v0, v)2)1/2
·

· 1

2
(|λ0 − λ|2 + dT (v0, v)2)1/2. (1.6.5)

Therefore,

(|λ1 − λ|2 + dT (v1, v)2)1/2 ≤
√

2 · δ(
√

2u) · 1

2
(|λ0 − λ|2 + dT (v0, v)2)1/2. (1.6.6)

From (1.6.6), (1.6.5), and the fact that δ(
√

2u) ≤ 1, working by induction we
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get

(|λk − λ|2 + dT (vk, v)2)1/2 ≤
√

2 · δ(
√

2u) ·
(

1

2

)2k−1

· (|λ0 − λ|2 + dT (v0, v)2)1/2,

for all k > 0, where (λk, vk) := Nk
A(λ0, v0) .

Proposition 1.6.2. Let (A, λ, v) ∈W, such that ‖A‖F = 1 and ‖v‖ = 1. Then,

µ(A, λ, v) ≤ ‖DFA (λ, v) |K×v⊥−1‖ ≤ 2 · µ(A, λ, v).

Proof. Since the action of Un(K) on P(Kn) is transitive, we may assume that

v = (1, 0, . . . , 0)T . Then, completing to a basis of K× v⊥, we have that

A =

(
λ w

0 Â

)
, DFA(λ, v)|K×v⊥ =

(
1 −w
0 Πv⊥(λIn − A)|v⊥

)
,

where w ∈ K1×(n−1).

Note that (DFA(λ, v)|K×v⊥)−1 =

(
1 w(Πv⊥(λIn − A)|v⊥)−1

0 (Πv⊥(λIn − A)|v⊥)−1

)
. Hence

‖DFA (λ, v) |K×v⊥−1‖ ≥ max{1, ‖(Πv⊥(λIn − A)|v⊥)−1‖} = µ(A, λ, v).

On the other hand,

‖DFA (λ, v) |K×v⊥−1‖ ≤

≤

∥∥∥∥∥
(

1 w(Πv⊥(λIn − A)|v⊥)−1

0 0

)∥∥∥∥∥+

∥∥∥∥∥
(

0 0

0 (Πv⊥(λIn − A)|v⊥)−1

)∥∥∥∥∥
≤ max{1, ‖w(Πv⊥(λIn − A)|v⊥)−1‖}+ ‖(Πv⊥(λIn − A)|v⊥)−1‖
≤ 2 · µ(A, λ, v).

Proof of Proposition 1.4.1

Proof of Proposition 1.4.1. The proof follows directly from Proposition 1.6.1, Propo-

sition 1.6.2 and Lemma 1.3.5.
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Proof of Lemma 1.4.2

Lemma 1.6.4. Let A ∈ Kn×n, A 6= 0n, such that ‖A‖F = 1. Let λ, λ′ ∈ K such

that |λ| ≤ 1.

1. If |λ′ − λ| ≤ c for some 0 ≤ c <
√

2, then, there exists βc > 1 such that

dP((A, λ), (A, λ)) ≤ βc · |λ′ − λ|.

One may choose βc = (1− c2/2)−1/2.

2. If dP((A, λ), (A, λ′)) ≤ θ̂ for some 0 ≤ θ̂ < π/4, then, there exist Rθ > 1

such that

|λ′ − λ| ≤ Rθ̂ · dP((A, λ), (A, λ′)).

One may choose Rθ̂ = [
√

2/ cos(θ̂ + π/4)3]1/2.

Proof. Let θ := dP((A, λ), (A, λ′)). By the law of cosines we know that

|λ− λ′|2 = 1 + |λ|2 + 1 + |λ′|2 − 2 ·
√

1 + |λ|2 ·
√

1 + |λ′|2 · cos θ.

Then,

|λ− λ′|2 =
(√

1 + |λ|2 −
√

1 + |λ′|2
)2

+ (1.6.7)

+2 ·
√

1 + |λ|2 ·
√

1 + |λ|2 · (1− cos θ).

From (1.6.7) we get that

|λ− λ′|2 ≥ 2 ·
√

1 + |λ|2 ·
√

1 + |λ|2 · (1− cos θ),

i.e.

1− cos θ ≤ |λ− λ′|2

2 ·
√

1 + |λ|2 ·
√

1 + |λ|2
≤ |λ

′ − λ|2

2
. (1.6.8)

Therefore, 1−cos θ ≤ c2

2
, and hence the angle θ is bounded above by arccos (1− c2/2).

By the Taylor expansion of cosine near 0 we get the bound

θ2 ≤ 2

1− c2/2
· (1− cos θ).
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Then, from (1.6.8) we can deduce the upper bound in (1).

For the lower bound in (2), we rewrite the cosine law and we get:

|λ− λ′|2 =

(
|λ|2 − |λ′|2√

1 + |λ|2 +
√

1 + |λ′|2

)2

+

+2
√

1 + |λ|2 ·
√

1 + |λ′|2 · (1− cos θ).

Since ||λ| − |λ′|| ≤ |λ− λ′| and 1− cos θ ≤ θ2/2, then,

|λ− λ′|2 ≤

(
|λ|+ |λ′|√

1 + |λ|2 +
√

1 + |λ′|2

)2

· |λ− λ′|2 + (1.6.9)

+
√

1 + |λ|2 ·
√

1 + |λ′|2 · θ2

Since 0 ≤ |λ| ≤ 1, is easy to see that

|λ|+ |λ′|√
1 + |λ|2 +

√
1 + |λ′|2

≤ 1 + |λ′|√
2 +

√
1 + |λ′|2

.

Moreover, by elementary arguments one can see that |λ′| ≤ tan(θ̂ + π/4), and

therefore one can get

|λ|+ |λ′|√
1 + |λ|2 +

√
1 + |λ′|2

≤ 1 + tan(θ̂ + π/4)
√

2 +

√
1 + tan(θ̂ + π/4)2

≤ tan(θ̂ + π/4)√
1 + tan(θ̂ + π/4)2

= sin(θ̂ + π/4).

Then, from (1.6.9),

|λ− λ′|2 ≤
√

1 + |λ|2 ·
√

1 + |λ′|2

cos(θ̂ + π/4)2
· θ2,

and hence

|λ− λ′|2 ≤
√

2

cos(θ̂ + π/4)3
· θ2.
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Remark 1.6.2. Note that if (A, λ) ∈ π1(V) ⊂ P(Kn×n × K) then |λ| ≤ ‖A‖F is

always satisfied.

Proof of Lemma 1.4.2

Proof of Lemma 1.4.2. The proof of (1) and (2) follows directly from de definition

of dP2 and Lemma 1.6.4.
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Chapter 2

Complexity of The Eigenvalue

Problem II: Distance Estimates

in the Condition Metric

2.1 Introduction

Following Chapter 1, we define the solution variety as

V =:
{

(A, λ, v) ∈ P
(
Kn×n ×K

)
× P (Kn) : (λIn − A)v = 0

}
,

where P(E) denotes the projective space associated with the vector space E.

Recall that W ⊂ V be the set of well-posed problems, that is the set of

triples (A, λ, v) ∈ V such that λ is a simple eigenvalue. In that case, for a fixed

representative (A, λ, v) ∈ V, the operator Πv⊥(λIn − A)|v⊥ is invertible, where

Πv⊥ denotes the orthogonal projection of Kn onto v⊥. The condition number of

(A, λ, v) is defined by

µ(A, λ, v) := max
{

1, ‖A‖F · ‖Πv⊥(λIn − A)|v⊥−1‖
}
, (2.1.1)

where ‖ · ‖F and ‖ · ‖ are the Frobenius and operator norms in the space of

matrices. We also let µ(A, λ, v) =∞ when (A, λ, v) ∈ V−W.

When Γ(t), a ≤ t ≤ b, is an absolutely continuous path in W, we defined in
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last chapter its condition-length as

`µ(Γ) :=

∫ b

a

∥∥∥Γ̇(t)
∥∥∥

Γ(t)
· µ (Γ(t)) dt, (2.1.2)

where
∥∥∥Γ̇(t)

∥∥∥
Γ(t)

is the norm of Γ̇(t) in the unitarily invariant Riemannian struc-

ture on V (see Section 2.1.1). Here , Γ̇(t) := ΠΓ(t)⊥
d
dt

Γ(t), where d
dt

Γ(t) is the

“free” derivative.

Recall Theorem 2 from last chapter:

There is a universal constant C > 0 such that for any absolutely

continuous path Γ in W, there exists a sequence which approximates

Γ, and such that the complexity of the sequence is

K ≤ C `µ(Γ) + 1.

(One may choose C = 120).

2.1.1 Main Theorem

Let {e1, . . . , en} be the canonical basis of Kn, and G := e1 · e∗1 ∈ Kn×n. Let

W0 be the set of problems (A, λ, v) ∈ W such that µ(A, λ, v) = 1. Notice that

(G, 1, e1) ∈W0.

Theorem 4. For every problem (A, λ, v) ∈W there exist a path Γ in W joining

(A, λ, v) with (G, 1, e1), and such that

`µ(Γ) ≤
√

2
√

2n+ 1 · (1 + log
(√

2µ(A, λ, v)
)
) + π

√
n− 1 +

√
n+ 1 + π

√
2n.

Canonical Metric Structures

In this section we recall the canonical metric structures.

The space Kn is equipped with the canonical Hermitian inner product 〈·, ·〉.
The space Kn×n is equipped with the Frobenius Hermitian inner product

〈A,B〉F := trace (B∗A),
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2.2 Proof of Main Theorem

where B∗ denotes the adjoint of B.

In general, if E is a finite dimensional vector space over K with the Hermi-

tian inner product 〈·, ·〉, we can define an Hermitian structure over P(E) in the

following way: for x ∈ E,

〈w,w′〉x :=
〈w,w′〉
‖x‖2

,

for all w, w′ in the Hermitian complement x⊥ of x in E, which is a natural

representative of the tangent space TxP(E).

In this way, the space P
(
Kn×n ×K

)
× P(Kn) inherits the Hermitian product

structure

‖(Ȧ, λ̇, v̇)‖2
(A,λ,v) = ‖(Ȧ, λ̇)‖2

(A,λ) + ‖v̇‖2
v (2.1.3)

for all (Ȧ, λ̇, v̇) ∈ (A, λ)⊥ × v⊥.

Let Un(K) stand for the unitary group when K = C or the orthogonal group

when K = R. The group Un(K) acts on P(Kn) in the natural way, and acts on

Kn×n by sending A 7→ UAU−1. Moreover if (A, λ, v) ∈ V, then (UAU−1, λ, Uv) ∈
V. Thus, V is invariant under the product action Un(K)× V→ V given by

U · (A, λ, v) 7→ (UAU−1, λ, Uv), U ∈ Un(K).

The group Un(K) preserves the Hermitian structure on V, therefore Un(K)

acts by isometries on V. Moreover, the condition number µ is Un(K)-invariant.

2.2 Proof of Main Theorem

Proposition 2.2.1. Let (A, λ, v) ∈W. Then, there exists Γ(t) = (A(t), λ(t), v(t)) ∈
W, such that

• Γ(0) = (A, λ, v); Γ(1) = (B, 0, v).

• B has v as a left and right eigenvector;

• ‖B‖F−1 · Πv⊥B|v⊥ : v⊥ → v⊥ is a linear isometry, and

•
`µ(Γ) ≤

√
2
√

2n+ 1
(

1 + log
(√

2µ(A, λ, v)
))

.
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For the proof of Proposition 2.2.1 we use the following lemma.

Lemma 2.2.1. Let 0 < σ < 1. Then,∫ 1

0

1

(1− t)σ + t
dt =

log( 1
σ
)

1− σ
≤ 1 + log(

1

σ
)

Proof. The equality is straightforward.

Since the Taylor expansion of log(1− x) = −
∑+∞

n=1
xn

n
, we have

− log(σ)

1− σ
=
− log(1− (1− σ))

1− σ
=

+∞∑
n=1

(1− σ)n−1

n
≤

+∞∑
n=1

(1− σ)n−1

n− 1
= 1− log(σ).

Lemma 2.2.2. Let (A, λ, v) ∈ W. Then, ‖A‖F · ‖Πv⊥(λIn − A)|v⊥−1‖ ≥ 1/
√

2.

In particular µ(A, λ, v) ≤
√

2‖A‖F · ‖Πv⊥(λIn − A)|v⊥−1‖.

Proof. One has,

‖Πv⊥(λIn − A)|v⊥‖ ≤ ‖Πv⊥(A)|v⊥‖+ |λ| ≤
√

2‖A‖F ,

that is, ‖Πv⊥(λIn − A)|v⊥‖ ≤
√

2‖A‖F . Therefore,

1 = ‖ (Πv⊥(λIn − A)|v⊥)−1 Πv⊥(λIn − A)|v⊥‖
≤
√

2‖A‖F‖ (Πv⊥(λIn − A)|v⊥)−1 ‖.

Therefore, we conclude that for (A, λ, v) ∈W

‖A‖F · ‖Πv⊥(λIn − A)|v⊥−1‖ ≤ µ(A, λ, v) ≤
√

2‖A‖F · ‖Πv⊥(λIn − A)|v⊥−1‖.

Proof of Proposition 2.2.1. Fix a representative of (A, λ, v) ∈ W. Without loss

of generality we may assume v = e1. Moreover, since our framework is scale

invariant in (A, λ), we may assume also that ‖A‖F = 1. In this case, we have

A =

(
λ A1

0 Â

)
,
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2.2 Proof of Main Theorem

where, in particular, |λ| ≤ ‖A‖F = 1.

Since (A, λ, v) ∈ W, there exists U, V ∈ Un−1(K) such that Â − λIn−1 =

UDV ∗, where D = diag(σ2, . . . , σn), 0 < σn ≤ σn−1 ≤ . . . σ2.

Then, from Lemma 2.2.2 we get

1

σn
≤ µ(A, λ, v) ≤

√
2 · 1

σn
.

For t ∈ [0, 1], let

A(t) = (1− t)A+ t

(
0 0

0 UV ∗

)
=

(
(1− t)λ (1− t)A1

0 (1− t)(λIn−1 + UDV ∗) + tUV ∗

)
,

and let Γ(t) = (A(t), (1 − t)λ, e1) ∈ V. Note that Γ(1) =

((
0 0

0 UV ∗

)
, 0, e1

)
satisfy the first three conditions.

Since

µ(Γ(t)) ≤
√

2‖A(t)‖F ·
∥∥((1− t)D + tIn−1)−1

∥∥ =
√

2
‖A(t)‖F

(1− t)σn + t
< +∞,

then Γ(t) ∈W,

Taking the free derivative with respect to t we get

d

dt
Γ(t) =

((
0 0

0 UV ∗

)
− A,−λ, 0

)
.

Therefore∥∥∥Γ̇(t)
∥∥∥

Γ(t)
≤ ((‖UV ∗‖F + ‖A‖F )2 + |λ|2)

1/2

(‖A(t)‖2
F + |(1− t)λ|2)1/2

≤
√

2n+ 1

(‖A(t)‖2
F + |(1− t)λ|2)1/2

.
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Hence,

`µ(Γ) =

∫ 1

0

∥∥∥Γ̇(t)
∥∥∥

Γ(t)
· µ(Γ(t)) dt

≤
√

2 ·
∫ 1

0

√
2n+ 1

(‖A(t)‖2
F + |(1− t)λ|2)1/2

· ‖A(t)‖F
(1− t)σn + t

dt

≤
√

2 ·
√

2n+ 1

∫ 1

0

1

(1− t) σn√
2

+ t
dt.

Since σn√
2
∈ (0, 1), we get from Lemma 2.2.1 that

`µ(Γ) ≤
√

2
√

2n+ 1
(

1 + log
(√

2µ(A, λ, v)
))

.

Lemma 2.2.3. Let (B, 0, v) ∈W such that B has v as a left and right eigenvector,

and ‖B‖F−1Πv⊥B|v⊥ is a linear isometry of v⊥ onto itself. Then, there exist a

path Γ2 : [0, 1]→W, starting at (B, 0, v) such that

• Γ2(1) = (C, 0, v);

• C has v as a left and right eigenvector;

• ‖C‖F−1 · Πv⊥C|v⊥ = Iv⊥ is the identity operator, and

•
`µ(Γ2) ≤ π ·

√
n− 1.

Proof. Without loss of generality, we may assume v = e1, and ‖B‖F = 1.

Then, B =

(
0 0

0 U

)
, where U ∈ Un−1(K). There exists V ∈ Un−1 such that

U = V diag(eiθ2 , . . . , eiθn)V −1, for θ2, . . . , θn ∈ [−π, π]. Let

U(t) = V diag(e(1−t)iθ2 , . . . , e(1−t)iθn)V −1, 0 ≤ t ≤ 1.

Define Γ2(t) = (B(t), 0, v) ∈W where B(t) =

(
0 0

0 U(t)

)
. Note that Γ(1) satisfy

the first three conditions of the lemma.
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Then,

µ(Γ2(t)) = ‖U(t)‖F =
√
n− 1.

Note that d
dt

Γ2(t) =

((
0 0

0 U̇(t)

)
, 0, 0

)
, where U̇(t) is an antisymmetric matrix.

Then 〈 d
dt

Γ2(t),Γ2(t)〉 = 0, and therefore d
dt

Γ2(t) = Γ̇2(t). Then,

‖Γ̇2(t)‖Γ2(t) =
‖U̇(t)‖F
‖B(t)‖F

=
(|θ2|2 + . . .+ |θn|2)1/2

√
n− 1

≤ π.

Then,

`µ(Γ2) =

∫ 1

0

‖Γ̇2(t)‖Γ2(t) · µ(Γ2(t)) dt = π
√
n− 1.

Lemma 2.2.4. Let (C, 0, v) ∈W, such that C has v as a left and right eigenvec-

tor, and ‖C‖F−1 · Πv⊥C|v⊥ : v⊥ → v⊥ is the identity operator. Then, there exist

a path Γ3 : [0, 1]→W, joining (C, 0, v)with ( vv
∗

‖v‖2 , 1,
v
‖v‖), and

`µ(Γ3) ≤
√
n+ 1.

Proof. Assume that v = e1 and ‖C‖F = 1. Moreover, since our framework is scale

invariant, multiplying by −1, we may assume also that C =

(
0 0

0 −In−1

)
. For

t ∈ [0, 1], let Γ3(t) = ((1− t)C + te∗1e1, t, e1) . Note that Γ3(1) = (e∗1e1, 1, e1). One

has d
dt

Γ3(t) = (In, 1, 0) and µ(Γ3(t)) = ‖(1−t)C+te∗1e1‖F . Then, ‖Γ̇(t)‖ ≤
√
n+ 1

and we conclude

`µ(Γ3) ≤
√
n+ 1.

Lemma 2.2.5. Let ( vv
∗

‖v‖2 , 1,
v
‖v‖) ∈ W0. Then there exist a path Γ4 : [0, 1] → W0

joining ( vv
∗

‖v‖2 , 1,
v
‖v‖) with (G, 1, e1) such that

`µ(Γ4) ≤
√
π2n+ 1.

Proof. Let v be a representantive of norm 1, and U ∈ Un(K) such that Uv =

e1. There exists V ∈ Un(K) and real numbers θ1, . . . , θn ∈ [−π, π] such that
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U = V diag(eiθ1 , . . . , eiθn)V −1. Let U(t) = V diag(eitθ1 , . . . , eitθn)V −1 and Γ4(t) =

U(t) · (vv∗, 1, v) for t ∈ [0, 1] . By the invariance of µ under the action of Un(K),

we have Γ4(t) ∈ W0 for t ∈ [0, 1]. Moreover, 〈 d
dt

Γ4(t),Γ4(t)〉 = 0, therefore
d
dt

Γ4(t) = Γ̇4(t), and

∥∥∥Γ̇4(t)
∥∥∥2

Γ4(t)
=
‖U̇(t)vv∗U(t)∗ + U(t)vv∗U̇(t)∗‖2

F

‖U(t)vv∗U∗T‖2
F + 1

+
‖U̇(t)v‖2

‖v‖2

= 2‖U̇(t)v‖2,

where we use the fact that 〈U̇(t)vv∗U(t)∗, U(t)vv∗U̇(t)∗〉F = 0. Since ‖U̇(t)v‖ ≤
‖U̇(t)‖F ≤ π

√
n, we obtain ∥∥∥Γ̇4(t)

∥∥∥
Γ4(t)
≤ π
√

2n.

Proof of Theorem 4. The proof follows from Proposition 2.2.1, Lemma 2.2.3,

Lemma 2.2.4 and Lemma 2.2.5.
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Chapter 3

Smale’s Fundamental Theorem of

Algebra reconsidered

In his 1981 Fundamental Theorem of Algebra paper Steve Smale initiated the

complexity theory of finding a solution of polynomial equations of one complex

variable by a variant of Newtons’s method. In this chapter we reconsider his

algorithm in the light of work done in the intervening years. The main theorem

raises more problems than it solves. This chapter follows from a joint work with

Michael Shub (c.f. Armentano & Shub [2012]).

3.1 Introduction and Main Result

In his paper [Smale, 1981] Steve Smale initiated the complexity theory of finding a

solution of polynomial equations of one complex variable by a variant of Newtons’s

method. More specifically he considered the space Pd of monic polynomials of

degree d,

f(z) =
d∑
i=0

aiz
i, ad = 1 and ai ∈ C, (i = 0, . . . , d− 1).
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He identified Pd with Cd, with coordinates (a0, . . . , ad−1) ∈ Cd. In Pd he con-

sidered the poly-cylinder

P1 = {f ∈Pd : |ai| < 1, i = 0, . . . , d− 1}

to have finite volume and he obtained a probability space by normalizing the

volume equal 1. The algorithm he analyzed is given by: let 0 < h ≤ 1 and let

z0 = 0. Inductively define zn = Th(zn−1) where Th is the modified Newton’s

method for f given by Th(z) = z − h f(z)
f ′(z)

.

His eponymous main theorem was:

Main Theorem: There is a universal polynomial S(d, 1/µ) and a

function h = h(d, µ) such that for degree d and µ, 0 < µ < 1, the

following is true with probability 1 − µ. Let x0 = 0. Then xn =

Th(xn−1) is defined for all n > 0 and xs is an approximate zero for f

where s = S(d, 1/µ).

In Smale [1981], that xs is an approximate zero meant that there is an x∗ such

that f(x∗) = 0, xn → x∗ and
|f(xj+1)|
|f(xj)| < 1

2
, for j ≥ s, where xk+1 = xk − f(xk)

f ′(xk)
.

That is, xk+1 is defined by the usual Newton’s method for f . Smale mentions that

the polynomial S may be taken to be 100(d+2)d

µ7 . The notion of approximate zero

was changed in later papers (see Blum et al. [1998] for the later version). The

new version incorporates immediate quadratic convergence of Newton’s method

on an approximate zero. In the remainder of this chapter an approximate zero

refers to the new version.

Note that 1
µ7 is not finitely integrable, so Smale’s initial algorithm was not

proven to be finite average time or cost when the upper bound is averaged over

P1 (see [Blum et al., 1998, page 208, Proposition 2]).

A tremendous amount of work has been done in the last 30 years following

on Smale’s initial contribution, much too much to survey here. Let us mention a

few of the main changes. In one variable a lot of work has been done concerning

the choice of good starting point z0 for Smale’s algorithm other than zero. See

chapters 8 and 9 of Blum et al. [1998] and references in the commentary on

chapter 9. The latest work in this direction is Kim et al. [2011].
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Smale’s algorithm may be given the following interpretation. For z0 ∈ C,

consider ft = f − (1 − t)f(z0), for 0 ≤ t ≤ 1. ft is a polynomial of the same

degree as f , z0 is a zero of f0 and f1 = f . So, we analytically continue z0 to zt a

zero of ft. For t = 1 we arrive at a zero of f . Newton’s method is then used to

produce a discrete numerical approximation to the path (ft, zt).

If we view f as a mapping from C to C, then the curve zt is the branch of the

inverse image of the line segment L = {tf(z0) : 0 ≤ t ≤ 1}, containing z0.

L

tf(z0)

f(z0)

zt

z0

f

Here are several of the changes made in the intervening years. Renegar [1987]

considered systems of n-complex polynomial in n-variables. Given a degree d, we

let Pd stands for the vector space of degree d polynomials in n complex variables

Pd = {f : f(x) =
∑
‖α‖=d

aαx
α}

where α = (α1, . . . , αn) ∈ Nn is a multi-index, ‖α‖ =
∑d

k=1 αk, x
α = xα1

1 · · ·xαnn ,

aα ∈ C. We have suppressed de n for case of notation. It should be understood

from the context.

For (d) = (d1, . . . , dn), let P(d) = Pd1 × · · · ×Pdn so f = (f1, . . . , fn) ∈P(d)

is a system of n polynomial equations in n complex variables and fi has degree

di.

As Smale’s, Renegar’s results were not finite average cost or time. In a series

of papers Shub & Smale [1993a], Shub & Smale [1993b], Shub & Smale [1993c],
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Shub & Smale [1996], made some further changes and achieved enough results

for Smale 17th problem to emerge a reasonable if challenging research goal. Let

us recall the 17th problem from Smale [2000]:

Problem 17: Solving Polynomial Equations.

Can a zero of n-complex polynomial equations in n-unknowns be found

approximately, on the average, in polynomial time with a uniform

algorithm?

In place of P(d) and Cn it is natural to consider H(d) = Hd1×· · ·×Hdn where

Hdi is the vector space of homogeneous polynomials of degree di in n+1 complex

variables.

For f ∈ H(d) and λ ∈ C,

f(λζ) = ∆
(
λdi
)
f(ζ),

where ∆(ai) means the diagonal matrix whose i-th diagonal entry is ai. Thus

the zeros of f ∈ H(d) are now complex lines so may be considered as points in

projective space P(Cn+1). The map

idi : Pdi → Hdi , idi(f)(z0, . . . , zn) = zdi0 f

(
z1

z0

, . . . ,
zn
z0

)
,

is an isomorphism and i : P(d) → H(d) for i = (id1 , . . . , idn) is an isomorphism.

The affine chart

j : Cn → P(Cn+1), j(ζ1, . . . , ζn) = C(1 : ζ1 : . . . : ζn),

maps the zeros of f ∈ P(d) to zeros of i(f). In addition i(f) may have zeros at

infinity i.e. zeros with ζ0 = 0.

From now on we consider H(d) and P(Cn+1). On Hdi we put a unitarily invari-

ant Hermitian structure which we first encountered in the book Weyl [1939] and

which is sometimes called Weyl, Bombieri-Weyl or Kostlan Hermitian structure

depending on the applications considered.
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For α = (α0, . . . , αn) ∈ Nn+1, ‖α‖ = di the monomial xα = xα0
0 · · ·xαnn , the

Weyl Hermitian structure makes 〈xα, xβ〉 = 0, for α 6= β and

〈xα, xα〉 =

(
di
α

)−1

=

(
di!

α0! · · ·αn!

)−1

.

On H(d) we put the product structure

〈f, g〉 =
n∑
i=1

〈fi, gi〉.

On Cn+1 we put the usual Hermitian structure

〈x, y〉 =
n∑
k=0

xk yk.

Given a complex vector space V with Hermitian structure and a vector 0 6=

v ∈ V , we let v⊥ be the Hermitian complement of v,

v⊥ = {w ∈ V : 〈v, w〉 = 0}.

v⊥ is a model for the tangent space, TvP(V ), of the projective space P(V ) at

the equivalence class of v (which we also denote by v).

TvP(V ) inherits an Hermitian structure from 〈·, ·〉 by the formula

〈w1, w2〉v =
〈w1, w2〉
〈v, v〉

,

where w1, w2 ∈ v⊥ represent the tangent vectors at TvP(V ).

This Hermitian structure which is well defined is called the Fubini-Study Her-

mitian structure.

The group of unitary transformations U(n + 1) acts on H(d) and Cn+1 by

f 7→ f ◦ U−1 and ζ 7→ Uζ for U ∈ U(n+ 1).

This unitary action preserves the Hermitian structure on H(d) and Cn+1, see
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Blum et al. [1998]. That is, for U ∈ U(n+ 1),

〈f ◦ U−1, g ◦ U−1〉 = 〈f, g〉 for f, g ∈ H(d);

〈Uζ, Uζ ′〉 = 〈ζ, ζ ′〉 for ζ, ζ ′ ∈ Cn+1.

The zeros of λf and f for 0 6= λ ∈ C are the same, and we may consider

the space P
(
H(d)

)
. Now the space of problem instances is compact and the

space P(Cn+1) is compact as well. P
(
H(d)

)
has a unitarily invariant Hermtitian

structure which gives rise to a volume form of finite volume πN−1

Γ(N)
, where N =

dimH(d).

The average of a function φ : P
(
H(d)

)
→ R is

E(φ) =
1

vol(P
(
H(d)

)
)

∫
f∈P(H(d))

ϕ(f) df =
Γ(N)

πN−1

∫
f∈P(H(d))

ϕ(f) df.

If φ is induced by a homogeneous function φ : H(d) → R of degree zero, that

is, φ(λf) = φ(f), λ ∈ C − {0}, then we may also compute this average with

respect to the Gaussian measure on (H(d), 〈·, ·〉), that is,

E(φ) =
1

(2π)N
·
∫
H(d)

ϕ(f)e−‖f‖
2/2 df.

And it is this approach via the Gaussians above defined on H(d) and the

Fubini-Study Hermitian structure and volume form on P(Cn+1) that we take in

this chapter. The quantities we define on H(d) are homogeneous of degree zero,

thus are defined on P
(
H(d)

)
and benefit from the compactness of this space and

of P(Cn+1). While averages over systems of equations may be carried out in the

vector space H(d).

The solution variety

V = {(f, x) ∈ (H(d) − {0})× P(Cn+1) : f(x) = 0},

is a central object of study.

V is equipped with two projections:
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V

H(d) P(Cn+1)

π1 π2

The solution variety V also has a projective version, namely,

VP = {(f, x) ∈ P
(
H(d)

)
× P(Cn+1) : f(x) = 0}.

3.1.1 Homotopy Methods

Homotopy methods for the solution of a system f ∈ H(d) proceed as follows.

Choose (g, ζ) ∈ V a known pair. Connect g to f by a C1 curve ft in H(d),

0 ≤ t ≤ 1, such that f0 = g, f1 = f , and continue ζ0 = ζ to ζt such that

ft(ζt) = 0, so that f1(ζ1) = 0. By the implicit function theorem this continuation

is possible for a generic set of C1 paths in the C1 topolgy, and indeed even for

almost all “straight line” paths in H(d), i.e. if ζ is a non-degenerate zero of g then

for almost all f , ζ may be continued to a root of f along the curve ft = (1−t)g+tf .

Now homotopy methods numerically approximate the path (ft, ζt). One way

to accomplish the approximation is via (projective) Newton’s methods. Given an

approximation xt to ζt define

xt+∆t = Nft+∆t
(xt),

where

Nf (x) = x− (Df(x)|x⊥)−1f(x).

Recall that xt is an approximate zero of ft associated with the zero ζt means

that the sequence of Newton iteratives Nk
ft

(xt) converges immediately quadrati-

cally to ζt.

The main result of Shub [2009] is that ∆t may be chosen so that t0 = 0,

tk = tk−1 + ∆tk, xtk is an approximate zero of ftk with associated zero ζtk and
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tK = 1 for

K = K(f, g, ζ) ≤ C D3/2

∫ 1

0

µ(ft, ζt) ‖(ḟt, ζ̇t)‖(ft,ζt) dt. (3.1.1)

Here C is a universal constant, D = max di,

µ(f, ζ) = ‖f‖ · ‖(Df(ζ)|ζ⊥)−1∆(‖ζ‖di−1
√
di)‖

is the condition number of f at ζ, and

‖(ḟt, ζ̇t)‖(ft,ζt) = (‖ḟt‖ft + ‖ζ̇t‖ζt)1/2

is the norm of the tangent vector to the projected curve in (ft, ζt) in VP ⊂
P
(
H(d)

)
× P(Cn+1). The choice of ∆tk is made explicit in Dedieu et al. [2012].

In VP, ‖ζ̇t‖ζt ≤ µ(ft, ζt) ‖ḟt‖ft , so the estimates (3.1.1) may be bounded from

above by

K(f, g, ζ) ≤ C D3/2

∫ 1

0

µ(ft, ζt)
2 ‖ḟt‖ft dt, (3.1.2)

for a perhaps different universal constant C.

Finally in the case of straight line homotopy ‖ḟt‖ft =
sin(θ) ‖f0‖ ‖f1‖

‖ft‖2
, where

θ is the angle between f0 and f1. So (3.1.2) may be rewritten as

K(f, g, ζ) ≤ C D3/2 sin(θ) ‖f0‖ ‖f1‖
∫ 1

0

µ(ft, ζt)
2

‖ft‖2
dt, (3.1.3)

see Bürgisser & Cucker [2011].

Much attention has been devoted to studying the right hand of (3.1.3), for a

good starting point (g, ζ).

In Beltrán & Pardo [2009b], an affirmative probabilistic solution to Smale’s

17th problem is proven. They prove that a random point (g, ζ) is good in the

sense that with random fixed starting point (g, ζ) = (f0, ζ0) the average value of

the right hand side of (3.1.3) is bounded by O(nN). Moreover, Beltrán and Pardo

show how to pick a random starting point starting from a random n × (n + 1)

matrix.
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In [Bürgisser & Cucker, 2011] Bürgisser-Cucker produce a deterministic start-

ing point with polynomial average cost, except for a narrow range of dimensions.

More precisely:

There is a deterministic real number algorithm that on input f ∈ H(d)

computes an approximate zero of f in average time NO(log logN), where

N = dimH(d) measures the size of the input f . Moreover, if we

restrict data to polynomials satisfying

D ≤ n
1

1+ε , or D ≥ n1+ε,

for some fixed ε > 0, then the average time of the algorithm is poly-

nomial in the input size N .

So Smale’s 17th problem in its deterministic form remains open for a narrow

range of degrees and variables.

3.1.2 Smale’s Algorithm Reconsidered

Smale’s 1981 algorithm depends on f(0), so there is no fixed starting point for

all systems. Given ζ ∈ P(Cn+1) we define for f ∈ H(d) the straight line segment

ft ∈ H(d), 0 ≤ t ≤ 1, by

ft = f − (1− t)∆
(
〈·, ζ〉di
〈ζ, ζ〉di

)
f(ζ).

So f0(ζ) = 0 and f1 = f . Therefore we may apply homotopy methods to this line

segment.

Note that if we restrict f to the affine chart ζ + ζ⊥ then

ft(z) = f(z)− (1− t)f(ζ),

and if we take ζ = (1, 0, . . . , 0) and n = 1 we recover Smale’s algorithm.

There is no reason to single out ζ = (1, 0, . . . , 0). Since the unitary group acts

by isometries on P
(
H(d)

)
, P(Cn+1), V and VP, and preserves µ and is transitive

on P(Cn+1), all the points ζ yield algorithms with the same average cost.
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Note that if we let

Vζ = {f ∈ H(d) : f(ζ) = 0},

then

f0 = f −∆

(
〈·, ζ〉di
〈ζ, ζ〉di

)
f(ζ),

is the orthogonal projection Πζ(f) of f on Vζ . This follows from the reproducing

kernel property of the Weyl Hermitian product on Hdi , namely,

〈g, 〈·, ζ〉di〉 = g(ζ), (3.1.4)

for all g ∈ Hdi , (i = 1, . . . , n). In particular ‖〈·, ζ〉di‖ = ‖ζ‖di .
Then,

‖f − Πζ(f)‖ = ‖∆(‖ζ‖−di)f(ζ)‖,

while

‖Πζ(f)‖ =
(
‖f‖2 − ‖∆(‖ζ‖−di)f(ζ)‖2

)1/2
.

Let Φ : H(d) × P(Cn+1)× [0, 1]→ V is the map given by

Φ(f, ζ, t) = (ft, ζt), (3.1.5)

where

ft = (1− t)Πζ(f) + tf,

that is,

ft = f − (1− t)∆
(
〈·, ζ〉di
〈ζ, ζ〉di

)
f(ζ),

and ζt is the homotopy continuation of ζ along the path ft.

Proposition 3.1.1. For almost every f ∈ H(d), the set of ζ ∈ P(Cn+1) such that

Φ is defined for all t ∈ [0, 1] has full measure. Moreover, for every ζ ∈ P(Cn+1),

the set of f ∈ H(d) such that Φ is defined for all t ∈ [0, 1] has full measure.

(See Section 3.2 for a proof of Proposition 3.1.1).

Remark: In fact, the proof also shows that the complement of the set (f, ζ)

such that Φ is defined for all t ∈ [0, 1] is a real algebraic set.
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The norm of ḟt is given now by the formula

‖ḟt‖ft =
‖f0‖ ‖f1‖ sin(θ)

‖ft‖2
=
‖Πζ(f)‖ ‖f − Πζ(f)‖

‖ft‖2

=

(
‖f‖2 − ‖∆(‖ζ‖−di)f(ζ)‖2

)1/2 ‖∆(‖ζ‖−di)f(ζ)‖
‖ft‖2

.

Let K(f, ζ) = K(f,Πζ(f), ζ) and Kζ(f) = K(f, ζ). Then, the average cost of

this algorithm satisfy

Proposition 3.1.2.

E(Kζ) = E(K) ≤ (I),

where

(I) =
CD3/2

(2π)N vol(P(Cn+1))
·
∫
f∈H(d)

∫
ζ∈P(Cn+1)

∫
t∈[0,1]

µ(ft, ζt)
2

‖ft‖2
·

·
(
‖f‖2 − ‖∆(‖ζ‖−di)f(ζ)‖2

)1/2 ‖∆(‖ζ‖−di)f(ζ)‖ e−‖f‖2/2 df dζ dt.

As we have mentioned above it is easy to see by unitary invariance of all

the quantities involved that the average E(Kζ) is independent of ζ and equal to

E(K). This argument proves the first equality of this proposition. The inequality

follows immediately from the definition of K(f, ζ).

What is gained by letting ζ vary and dividing by vol(P(Cn+1)) is a new way

to see the integral which raises a collection of interesting questions.

Suppose η is a non-degenerate zero of h ∈ H(d). We define the basin of η,

B(h, η), as those ζ ∈ P(Cn+1) such that the zero ζ of h−∆
(
〈·,ζ〉di
〈ζ,ζ〉di

)
h(ζ) continues

to η for the homotopy ht. From the proof of Proposition 3.1.1 we observe that

the basins are open sets.

Let (I) be the expression defined on Proposition 3.1.2. Then, the main result

of this chapter is

Theorem 5.

(I) =
CD3/2Γ(n+ 1)2n−1

(2π)Nπn

∫
h∈H(d)

[ ∑
η/ h(η)=0

µ2(h, η)

‖h‖2
Θ(h, η)

]
e−‖h‖

2/2 dh,
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where

Θ(h, η) =

∫
ζ∈B(h,η)

(
‖h‖2 − ‖∆(‖ζ‖−di)h(ζ)‖2

)1/2

‖∆(‖ζ‖−di)h(ζ)‖2n−1
·

· Γ(‖∆(‖ζ‖−di)h(ζ)‖2/2, n)e‖∆(‖ζ‖−di )h(ζ)‖2/2 dζ,

and Γ(α, n) =
∫ +∞
α

tn−1e−t dt is the incomplete gamma function.

Essentially nothing is known about the integrals.

(a) Is (I) finite for all or some n?

(b) Might (I) even be polynomial in N for some range of dimensions and de-

grees?

(c) What are the basins like? Even for n = 1 these are interesting questions.

The integral

1

(2π)N

∫
h∈H(d)

∑
η/ h(η)=0

µ2(h, η)

‖h‖2
· e−‖h‖2/2 dh ≤ e(n+ 1)

2
D,

where D = d1 · · · dn is the Bézout number (see Bürgisser & Cucker [2011]).

So the question is how does the factor Θ(h, η) affect the integral.

(d) Evaluate or estimate∫
ζ∈P(Cn+1)

1

‖∆(‖ζ‖−di)h(ζ)‖2n−1
· e

1
2
‖∆(‖ζ‖−di )h(ζ)‖2 dζ.

Note that

‖h‖Lp =

(
1

vol(P(Cn+1))

∫
ζ∈P(Cn+1)

‖∆(‖ζ‖−di)h(ζ)‖p dζ
)1/p

,

for p ≥ 1, is a different way to define a norm on h. For p = 2 we get

another unitarily invariant Hermitian structure on H(d), which differs from
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the Bombieri-Weyl by

‖h‖2
L2 =

n∑
i=1

di!n!

(di + n)!
‖hi‖2,

(cf. [Dedieu, 2006, page 133])

If the integral in (d) can be controlled, if the integral on the D basins are reason-

ably balanced, the factor of D in (c) may be cancel.

Remark: The proof of Theorem 5 involved complicated formulas which exhib-

ited enormous calculations. We do not have a good explanation for this cancel-

lation.

At the end of this chapter we present some numerical experiments with n = 1

and d = 7 which were done by Carlos Beltrán on the Altamira super computer at

the Universidad de Cantabria (partially supported by MTM2010-16051 Spanish

Ministry of Science and Innovation MICINN). It would be interesting to see more

experimantal data. The proof of the Theorem 5 is in Section 3.3.

3.2 Proof of Proposition 3.1.1

For the proof of Proposition 3.1.1 we need a technical lemma.

Lemma 3.2.1. Let E be a vector bundle over B, F be finite dimensional vector

space, and consider the trivial vector bundle F × B. Let ϕ : F × B → E be a

bundle map, covering the identity in B, which is a fiberwise surjective linear map.

Then, ϕ is a surjective submersion.

The proof is left to the reader.

Recall that Φ : H(d) × P(Cn+1)× [0, 1]→ V is the map given by

Φ(f, ζ, t) = (ft, ζt),

where

ft = f − (1− t)∆
(
〈·, ζ〉di
〈ζ, ζ〉di

)
f(ζ),

and ζt is the homotopy continuation of ζ along the path ft.
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This map is defined at (f, ζ, t) provided that rank(Dft(ζt)|ζ⊥t ) = n.

Let K be the vector bundle over Cn+1 − {0} with fiber Kz = L(z⊥,Cn),

z ∈ Cn+1 − {0}, where L(z⊥,Cn) is the space of linear transformations from z⊥

to Cn. For k = 0, . . . , n, let Kk be the sub-bundle of rank k linear transformations.

Note that Kk has (n−k)2 complex codimension (c.f. Arnold et al. [1985]). These

sub-bundles define a stratification of the bundle K.

Lemma 3.2.2. Let Ω(0) be the set of pairs (f, ζ) ∈ H(d)×P(Cn+1) such that Φ is

not defined for t = 0. Then Ω(0) is a stratified set of smooth manifolds of complex

codimension (n− k)2, for k = 0, . . . , n− 1.

Proof. Let Ω̂(0) be the inverse image of Ω(0) under the canonical projection H(d)×
Cn+1 − {0} → H(d) × P(Cn+1).

Let ϕ : H(d) × Cn+1 − {0} → K be the map ϕ(f, ζ) = Df(ζ)|ζ⊥ . For each

k = 0, . . . , n − 1, let Ω̂
(0)
k = ϕ−1(Kk). Since Df0(ζ)|ζ⊥ = Df(ζ)|ζ⊥ , then Ω̂(0) =

∪n−1
k=0Ω̂

(0)
k .

Claim: ϕ is transversal to Kk for k = 0, . . . , n− 1:

Note that ϕ(f, ·) : Cn+1 − {0} → K is a section of the vector bundle K for each

f ∈ H(d). Moreover, for each ζ ∈ Cn+1 − {0}, the linear map ϕ(·, ζ) : H(d) → Kζ

is a surjective linear map. This fact follows by construction: given L ∈ Kζ =

L(ζ⊥,Cn), let L̃ ∈ L(Cn+1,Cn) be any linear extension of L to Cn+1. Then, the

system f = ∆( 〈·,ζ〉
di−1

〈ζ,ζ〉di−1 )L̃(·) ∈ H(d) satisfy Df(ζ)|ζ⊥ = L. Then, the claim follows

from Lemma 3.2.1.

Since ϕ is tranversal, we conclude that the inverse image of a stratification is

a stratification of the same dimension (c.f. Arnold et al. [1985]). That is, Ω̂(0)

is a stratification of complex submanifolds of complex codimension (n− k)2, for

k = 0, . . . , n− 1.

Moreover, since each strata Ω̂
(0)
k is transversal to the fiber of the canonical

projection H(d)×Cn+1−{0} → H(d)×P(Cn+1), then, its image, Ω
(0)
k , is a smooth

manifold of codimension (n− k)2, and the lemma follows.

One can define the homotopy continuation of the pair (f, ζ) ∈ H(d)×P(Cn+1)

for all t ∈ [0, 1] whenever (f, ζ) /∈ Ω(0) and lies outside the subset of pairs such
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that there exist (w, t) ∈ P(Cn+1)× (0, 1] satisfying the following equations:

f(w) = (1− t)∆
(
〈w, ζ〉di
〈ζ, ζ〉di

)
f(ζ), and rank(Dft(w)) < n.

Note that, since ft is homogeneous, then rank(Dft(w)) is well defined on w ∈
P(Cn+1).

Differentiating ft we get

Dft(w) = Df(w)− (1− t)∆
(
di〈w, ζ〉di−1〈·, ζ〉
〈ζ, ζ〉di

)
f(ζ).

Therefore, taking s = 1 − t, we conclude that one can define the homotopy

continuation of the pair (f, ζ) ∈ H(d)×P(Cn+1) for all t ∈ [0, 1] whenever (f, ζ) /∈
Ω(0) and lies outside the subset of pairs such that there exist (w, s) ∈ P(Cn+1)×
[0, 1) satisfying, for some k = 0, . . . , n− 1, the following equations:

∆(〈ζ, ζ〉di)f(w)− s∆(〈w, ζ〉di)f(ζ) = 0, (3.2.1)

rank
([

∆(〈ζ, ζ〉di) ·Df(w)− s∆(di〈w, ζ〉di−1〈·, ζ〉) f(ζ)
] ∣∣
w⊥

)
= k. (3.2.2)

Let Σ′ ⊂ V be the set of critical points of the projection π1 : V → H(d), and

let Σ = π1(Σ′) ⊂ H(d) be the discriminant variety.

Note that if f ∈ Σ then every ζ ∈ P(Cn+1) satisfies equations (3.2.1) and

(3.2.2) for s = 0 and w ∈ P(Cn+1) a critical root of f . Hence, it is natural to

remove the discriminant variety Σ and the case s = 0 from this discussion.

Lemma 3.2.3. Let Λ ⊂ H(d)−Σ×P(Cn+1)×P(Cn+1)× (0, 1) be the set of tuples

(f, ζ, w, s) such that equations (3.2.1) and (3.2.2) holds for some k = 0, . . . , n−1.

Then, Λ is stratified set of smooth manifolds of real codimension 2(n+ (n− k)2)

for k = 0, . . . , n− 1.

Proof. Similar to the preceding proof, for each k = 0, . . . , n− 1, we consider the

set Λ̂k ⊂ H(d) − Σ × Cn+1 − {0} × Cn+1 − {0} × (0, 1) of tuples (f, ζ, w, s) such

that equations (3.2.1) and (3.2.2) holds .

Let (f, ζ, w, s) ∈ Λ̂k for some k ∈ {0, . . . , n− 1}. Since f /∈ Σ then 〈w, ζ〉 6= 0.
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Therefore from (3.2.1), equation (3.2.2) takes the form

rank ((〈w, ζ〉Df(w)−∆(di) f(w) 〈·, ζ〉) |w⊥) = k,

for k = 0, . . . , n− 1.

Let

F = (F1, F2) : H(d) − Σ× Cn+1 − {0} × Cn+1 − {0} × (0, 1)→ Cn ×K

be the map defined by

F1(f, ζ, w, s) = ∆(〈ζ, ζ〉di)f(w)− s∆(〈w, ζ〉di)f(ζ) ∈ Cn

F2(f, ζ, w, s) = (w, (〈w, ζ〉Df(w)−∆(di) f(w) 〈·, ζ〉) |w⊥) ∈ K.

Note that Λ̂k = F−1({0} ×Kk).

Claim: F is transversal to {0} ×Kk:

In fact, what we prove is that DF is surjective at any point (f, ζ, w, s) which

maps into {0} ×Kk, for any k = 0, . . . , n− 1, that is, any point in Λ̂k.

Recall that Vζ = {f ∈ H(d) : f(ζ) = 0}. Consider the following orthogonal

decomposition H(d) = Vζ ⊕ Cζ , where Cζ = Vζ
⊥.

Let (f, ζ, w, s) ∈ Λ̂k. We first prove that DF1(f, ζ, w, s)|Cζ : Cζ → Cn is

surjective.

Note that the linear map ξ : Cn → Cζ given by ξ(a) = ∆
( 〈·,ζ〉di
〈ζ,ζ〉di

)
a, is an

isomorphism, where ξ−1 : Cζ → Cn is given by ξ−1(f) = f(ζ). Then, under this

identification, the restriction to Cζ of the derivative of F1 is the linear map given

by

DF1(f, ζ, w, s)
∣∣
Cζ

= (1− s)∆(〈w, ζ〉di),

for all tuples (f, ζ, w, s). Moreover, since (f, ζ, w, s) ∈ Λ̂k, then 〈w, ζ〉 6= 0 and

s 6= 1, hence DF1(f, ζ, w, s)
∣∣
Cζ

is onto.

Now we prove that DF2(f, ζ, w, s)
∣∣
Vζ×TwP(Cn+1)

is surjective onto the tangent

space TF2(f,ζ,w,s)K, at every (f, ζ, w, s) ∈ Λ̂k.

Note that the map F2(f, ζ, ·, s) : Cn+1−{0} → K is a section of the vector bun-

dle K. Therefore, from Lemma 3.2.1, it is enough to prove that F2|H(d)
(·, ζ, w, s)

is a fiberwised surjective linear map.
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Fix a tuple (f, ζ, w, s) ∈ Λ̂k, for some k = 0, . . . , n − 1. The unitary group

U(n+1) acts by isometries on H(d)−Σ×Cn+1−{0}×Cn+1−{0} by U ·(f, ζ, w) =

(f ◦ U−1, U(ζ), U(w)), and leave Λ̂k invariant. Therefore we may assume that

w = e0. Write fi(z) =
∑
‖α‖=di a

(i)
α zα, (i = 1, . . . , n). Then, the linear map

F2(·, ζ, e0, s) : H(d) → Ke0 is given by

F2(f, ζ, e0, s) = ((ζ0 a
(i)
(di−1,vj)

− dia(i)
(di,0,...,0)ζj))i,j=1,...,n,

where vj is the n-vector with the j-entry equal to 1 and the others entries equal

to 0.

In particular, since ζ0 6= 0, the restriction F2(·, ζ, e0, s) : Vζ → Ke0 is surjec-

tive, concluding the claim.

Then, since F is tranversal to {0}×Kk, we conclude that Λ̂k = F−1({0}×Kk)

is a submanifold of real codimension 2(n+ (n− k)2), for k = 0, . . . , n− 1.

To end the proof, we note that Λ̂k is transversal to the fiber of the canonical

projection H(d) −Σ×Cn+1 − {0} ×Cn+1 − {0} × (0, 1)→ H(d) −Σ× P(Cn+1)×
P(Cn+1)× (0, 1).

Let Π : H(d)×P(Cn+1)×P(Cn+1)× (0, 1)→ H(d)×P(Cn+1) be the canonical

projection

Π(f, ζ, w, s) = (f, ζ).

Then, from Lemma 3.2.2 and Lemma 3.2.3 the set of pairs (f, ζ) ∈ H(d)×P(Cn+1)

such that the homotopy is not defined for all t ∈ [0, 1] is contained by the union

Ω(0) ∪ Π(Λ) ∪ Σ× P(Cn+1) ⊂ H(d) × P(Cn+1).

Remark: We could conclude the proof by Fubini’s Theorem. But we give a

different argument. See the remark at the end.

Proof of Proposition 3.1.1. For k = 0, . . . , n−1, let Ω
(0)
k ⊂ H(d)×P(Cn+1) be the

subset given in the proof of Lemma 3.2.2, and let π̂1 : H(d) × P(Cn+1) → H(d)

be the projection in the first coordinate. From Sard’s Lemma we get that almost

every f ∈ H(d) is a regular value of the restriction π̂1|Ω(0)
k

: Ω
(0)
k → H(d), for each

k = 0, . . . , n−1. Therefore, from Lemma 3.2.2, we conclude that for almost every
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f ∈ H(d) the subset

π̂1|Ω(0)
k

−1(f) = π̂−1
1 (f) ∩ Ω

(0)
k ⊂ P(Cn+1),

is an empty set or a smooth submanifold of complex dimension n− (n− k)2, for

k = 0, . . . , n − 1. Hence, for almost every f ∈ H(d), the set of ζ ∈ P(Cn+1) such

that Φ is not defined at t = 0 has measure zero.

Similar to the preceding argument, for each k = 0, . . . , n− 1, let Λk ⊂ H(d)−
Σ × P(Cn+1) × P(Cn+1) × P(Cn+1) × (0, 1) be the set of tuples (f, ζ, w, s) such

that equations (3.2.1) and (3.2.2) holds, and let Π̂f : H(d)×P(Cn+1)×P(Cn+1)×
P(Cn+1)× (0, 1)→ H(d) be the projection in the first coordinate. Then by Sard’s

Lemma, almost every f ∈ H(d) is a regular value of the restriction Π̂f |Λk : Λk →
H(d). Therefore, from Lemma 3.2.3, we conclude that for almost every f ∈ H(d)

the subset

Π̂f |Λk
−1

(f) = Π̂−1
f (f) ∩ Λk ⊂ P(Cn+1)× P(Cn+1)× (0, 1),

is an empty set or a smooth submanifold of real dimension 2n+ 1−2(n−k)2, for

k = 0, . . . , n− 1. Then, projecting in the ζ-space we obtain that for almost every

f ∈ H(d), the set of ζ ∈ P(Cn+1) such that Φ is not defined at t ∈ (0, 1) is a finite

union of measure zero sets. The proof of the first statement of the proposition

follows.

The second statement of Propostion 3.1.1 follows directly from proofs of the

claims of Lemma 3.2.2, andLemma 3.2.3, and the subsecuent analysis of dimen-

sions.

Remark: The proof of Propostion 3.1.1 follows immediately from Fubini’s

Theorem. But we say more because this discussion may be useful for the discus-

sion of the basins (recall question (c) after the statement of the main theorem).

This proposition proves that the boundary of the basins are contained in this

stratified set, the structure of which should be persistent by the isotopy theorem

(c.f. Arnold et al. [1985]) on the connected components of the complement of

the critical values of the projection. We don’t know if there is more than one

component.
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3.3 Proof of Theorem 5

Let us first state the notation in the forthcoming computations. Most of the

maps are defined between Hermitian spaces, however they are real differentiable.

Therefore, unless we mention the contrary, all derivatives are real derivatives.

Moreover, if a map is defined on P(Cn+1) then is natural to restrict its derivative

at ζ to the complex tangent space TζP(Cn+1). If L : E → F is a linear map

between finite dimensional Hermitian vector spaces, then its determinant, det(L),

is the determinant of the linear map L : E → Im(L), computed with respect to

the associated canonical real structures, namely, the real part of the Hermitian

product of E and the real part of the inherted Hermitian product on Im(L) ⊂ F .

The adjoint operator L∗ : F → E is the is also computed with respect to the

associated canonical real structures.

In general, if E is a set, IdE means the identity map defined on that set.

Since the set of triples (f, ζ, t) ∈ H(d)×P(Cn+1)× [0, 1] such that that t = 0 or

t = 1 has measure zero, we may assume in the rest of this section that t ∈ (0, 1).

Recall that Φ : H(d) × P(Cn+1)× [0, 1]→ V is the map given by

Φ(f, ζ, t) = (ft, ζt),

where

ft = f − (1− t)∆
(
〈·, ζ〉di
〈ζ, ζ〉di

)
f(ζ),

and ζt is the homotopy continuation of ζ along the path ft.

For each t ∈ (0, 1), let Φt : H(d) × P(Cn+1) → V be the restriction Φt(·, ·) =

Φ(·, ·, t).
Recall that for each non-degenerate root η of h, B(h, η) is the non-empty

open set of those ζ ∈ P(Cn+1) such that the zero ζ of Πζ(h) continues to η for

the homotopy ht = (1− t)Πζ(h) + th.

Lemma 3.3.1. Let t ∈ (0, 1), and let (h, η) ∈ V be a regular value of Φt. Then,

the fiber Φt(h, η)−1 is given by

Φ−1
t (h, η) = Ĥt(B(h, η)),
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where Ĥt = (ĥt, IdP(Cn+1)) : P(Cn+1)→ H(d) × P(Cn+1) and

ĥt(ζ) = h+

(
1− t
t

)
∆

(
〈·, ζ〉di
〈ζ, ζ〉di

)
h(ζ). (3.3.1)

Proof. For 0 < t < 1, we have that (f, ζ) ∈ Φ−1
t (h, η) provided that

i) h = ft = tf + (1− t)Πζ(f);

ii) the homotopy continuation of ζ on the path {sh+ (1− s)Πζ(f)}s∈[0,1] is η.

Since Πζ(h) = Πζ(f) we conclude that

f =
1

t
(h− (1− t)Πζ(h)) = h+

(
1− t
t

)
(h− Πζ(h)),

and ζ ∈ B(h, η).

Proposition 3.3.1. Let (f, ζ) ∈ H(d) × P(Cn+1) such that Φt is defined and let

(h, η) = Φt(f, ζ). Then the normal jacobian of Φt is given by

NJΦt(f, ζ) = t2n
JacĤt(ζ)

NJπ1(h, η)
,

where JacĤt(ζ) = | det(DĤt(ζ))| is the jacobian of the map Ĥt defined in Lemma

3.3.1.

The proof of this proposition is divided in several lemmas and is left to the

end.

Proof of Theorem 5. Recall from Proposition 3.1.2 that (I) is defined by

(I) =
CD3/2

(2π)N vol(P(Cn+1))
·
∫
f∈H(d)

∫
ζ∈P(Cn+1)

∫
t∈[0,1]

µ(ft, ζt)
2

‖ft‖2
·

· ‖Πζ(f)‖ ‖∆(‖ζ‖−di)f(ζ)‖ e−‖f‖2/2 df dζ dt.

Then, for 0 < t < 1, by the co-area formula for the map Φt : H(d)×P(Cn+1)→ V,
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and Proposition 3.3.1 we obtain

(I) =
CD3/2

(2π)N vol(P(Cn+1))
·
∫ 1

0

t−2n

∫
(h,η)∈V

µ(h, η)2

‖h‖2
NJπ1(h, η)·

·
∫

(f,ζ)∈Φ−1
t (h,η)

‖Πζ(f)‖ ‖∆(‖ζ‖−di)f(ζ)‖
JacĤt(ζ)

e−‖f‖
2/2 dt dV dΦ−1

t (h, η).

If Φt(f, ζ) = (h, ζ) then f(ζ) = h(ζ)/t, Πζ(f) = Πζ(h). From Lemma 3.3.1 we

obtain that, for all t ∈ (0, 1), Ĥt : B(h, η)→ Φ−1
t (h, η) given by ζ 7→ (ĥt(ζ), ζ), is a

parametrization of the fiber Φ−1
t (h, η). Moreover, since ζ = Ĥt

−1
(f, ζ)) whenever

Ĥt(ζ) = (f, ζ), then applying the change of variable formula we conclude that

(I) =
CD3/2

(2π)N vol(P(Cn+1))
·
∫ 1

0

t−2n−1

∫
(h,η)∈V

µ(h, η)2

‖h‖2
NJπ1(h, η)· (3.3.2)

·
∫
ζ∈B(h,η)

‖Πζ(h)‖ ‖∆(‖ζ‖−di)h(ζ)‖ e−‖ĥt(ζ)‖2/2 dt dV dζ.

From the definition of ĥt(ζ) in (3.3.1) and the reproducing kernel property of the

Weyl Hermitian product (3.1.4), we obtain

‖ĥt(ζ)‖2 = ‖h‖2 + 2

(
1− t
t

)
Re〈h,∆(〈ζ, ζ〉−di〈·, ζ〉di)h(ζ)〉+

+

(
1− t
t

)2

‖∆(〈ζ, ζ〉−di〈·, ζ〉di)h(ζ)‖2,

then

‖ĥt(ζ)‖2 = ‖h‖2 −
(

1− 1

t2

)
‖∆(‖ζ‖−di)h(ζ)‖2. (3.3.3)

From the change of variable u = α2/(2t2), one gets that∫ 1

0

1

t2n+1
e−α

2/(2t2) dt =
2n−1

α2n

∫ +∞

α2/2

un−1e−u du, (3.3.4)

where the last integral is the incomplete gamma function Γ(α2/2, n). Then, from

(3.3.2), (3.3.3), (3.3.4), and the fact that vol(P(Cn+1)) = πn/Γ(n+ 1) we obtain

(I) =
CD3/2Γ(n+ 1)2n−1

(2π)Nπn

∫
(h,η)∈V

µ(h, η)2

‖h‖2
NJπ1(h, η) ·Θ(h, η) dV,
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where

Θ(h, η) =

∫
ζ∈B(h,η)

(
‖h‖2 − ‖∆(‖ζ‖−di)h(ζ)‖2

)1/2

‖∆(‖ζ‖−di)h(ζ)‖2n−1
·

· Γ(‖∆(‖ζ‖−di)h(ζ)‖2/2, n)e‖∆(‖ζ‖−di )h(ζ)‖2/2 dζ.

Now, the proof of Theorem 5 follows applying the co-area formula for the projec-

tion π1 : V→ H(d).

3.3.1 Proof of Proposition 3.3.1

The map ĥt : P(Cn+1) → H(d) given in (3.3.1) is differentiable, and therefore Ĥt

is also differentiable.

Lemma 3.3.2. Let (f, ζ) ∈ H(d)×P(Cn+1) such that Φt is defined and let (h, η) =

Φt(f, ζ). Then,

NJΦt(f, ζ) =

∣∣∣det
[
D(π1 ◦ Φt)(ĥt(ζ), ζ) ·

(
IdH(d)

,−(Dĥt(ζ)|ζ⊥)∗
)]∣∣∣∣∣∣det(Idζ⊥ + (Dĥt(ζ)|ζ⊥)∗ ·Dĥt(ζ))|ζ⊥

∣∣∣1/2 ·NJπ1(h, η)

,

where
(
IdH(d)

,−(Dĥt(ζ)|ζ⊥)∗
)

: H(d) → H(d) × TζP(Cn+1) is the linear map

ḟ 7→ (ḟ ,−(Dĥt(ζ)|ζ⊥)∗ḟ).

Proof. In general, let E1 and E2 be finite dimensional vector spaces with inner

product. Let V ⊂ E1×E2 be a vector subspace such that dim(V ) = dim(E1), and

consider on V the inherited inner product. Let γ : E2 → E1 and α : E1×E2 → V

be linear operators. Consider the following diagram:

E1 × E2 V

E1 E2 E1

α

(IdE1 ,−γ∗) (γ, IdE2 ) π1

where (γ, IdE2) : E2 → E1 × E2, and π : V → E1 is the restriction of the

canonical projection in the first coordinate.
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Note that the image of the operator (IdE1 ,−γ∗) : E1 → E1 × E2 is the

orthogonal complement of (γ, Id)(E2) in E1 × E2, therefore, assuming that π1 is

an isomorphism, we get,

| det(α|((γ,IdE2
)(E2))⊥)| = |det (π1 · α · (IdE1 ,−γ∗))|

| det(IdE1 + γ · γ∗)|1/2 · | det(π1)|

=
|det (π1 · α · (IdE1 ,−γ∗))|

| det(IdE2 + γ∗ · γ)|1/2 · | det(π1)|
,

where the last equality follows by Sylvester Theorem: if A and B are matrices of

size n×m and m× n respectively, then

det(Idm +BA) = det(Idn + AB). (3.3.5)

Now the proof follows taking E1 = H(d), E2 = TζP(Cn+1), V = V, with the

associated real inner products, γ = Dĥt(ζ)|ζ⊥ and α = DΦt(ĥt, ζ)|H(d)×ζ⊥ .

The derivative of ĥt at ζ ∈ P(Cn+1) in the direction ζ̇ ∈ TζP(Cn+1) is given

by

Dĥt(ζ)ζ̇ =

(
1− t
t

)
· (Kζ(ζ̇) + Lζ(ζ̇)),

where Kζ , Lζ : TζP(Cn+1)→ H(d) are given by

Kζ(ζ̇) = ∆

(
〈·, ζ〉di
〈ζ, ζ〉di

)
·Dh(ζ)ζ̇; (3.3.6)

Lζ(ζ̇) = ∆

(
di〈·, ζ〉di−1〈·, ζ̇〉
〈ζ, ζ〉di

)
h(ζ), (3.3.7)

for all ζ̇ ∈ TζP(Cn+1).

Lemma 3.3.3. The adjoints operators Kζ
∗, Lζ

∗ : H(d) → TζP(Cn+1), are given

by

Kζ
∗(ḟ) = (Dh(ζ)|ζ⊥)∗ ·∆(〈ζ, ζ〉−di+1)ḟ(ζ), (3.3.8)

and

Lζ
∗(ḟ) = (Dḟ(ζ)|ζ⊥)∗ ·∆(〈ζ, ζ〉−di+1)h(ζ), (3.3.9)

for any ḟ ∈ H(d).
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Proof. By the definition of adjoint, the definition of Kζ and the reproducing

kernel property of the Weyl Hermitian product (3.1.4), we get

Re〈Kζ
∗(ḟ), ζ̇〉 = ‖ζ‖2 Re〈ḟ ,∆

(
〈ζ, ζ〉−di〈·, ζ〉di

)
·Dh(ζ)ζ̇〉

= Re〈ḟ(ζ),∆
(
〈ζ, ζ〉−di+1

)
·Dh(ζ)ζ̇〉

= Re〈(Dh(ζ)|ζ⊥)∗ ·∆(〈ζ, ζ〉−di+1)ḟ(ζ), ζ̇〉.

Moreover, differentiating equation (3.1.4) with respect to ζ, we obtain for Lζ
∗

that

Re〈Lζ∗(ḟ), ζ̇〉 = ‖ζ‖2 Re〈ḟ ,∆(〈ζ, ζ〉−didi〈·, ζ〉di−1〈·, ζ̇〉)h(ζ)〉
= Re〈Dḟ(ζ)ζ̇ ,∆(〈ζ, ζ〉−di+1)h(ζ)〉
= Re〈(Dḟ(ζ)|ζ⊥)∗ ·∆(〈ζ, ζ〉−di+1)h(ζ), ζ̇〉.

Lemma 3.3.4. One has,∣∣∣det(Idζ⊥ + (Dĥt(ζ)|ζ⊥)∗ ·Dĥt(ζ)|ζ⊥)
∣∣∣ =(

1 +

(
1− t
t

)2

‖∆(
√
di‖ζ‖−di)h(ζ)‖2

)2n

·∣∣∣∣∣det

(
Idζ⊥ +

(
1−t
t

)2
(Dh(ζ)|ζ⊥)∗ ·∆

(
‖ζ‖−di+1

)2 ·Dh(ζ)ζ⊥

1 +
(

1−t
t

)2 ∥∥∆
(√

di‖ζ‖−di
)
h(ζ)

∥∥2

)∣∣∣∣∣ .
Proof. By direct computation we get

Kζ
∗ ·Kζ = (Dh(ζ)|ζ⊥)∗ ·∆(〈ζ, ζ〉−di+1) ·Dh(ζ)|ζ⊥ ;

Kζ
∗ · Lζ = Lζ

∗ ·Kζ = 0.

Note that, if ḟ = Lζ(ζ̇) for some ζ̇ ∈ TζP(Cn+1), then, for all θ ∈ Cn we get

(Dḟ(ζ)|ζ⊥)∗θ =

(
Re〈θ,∆

(
di
‖ζ‖2

)
h(ζ)〉

)
ζ̇ .
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Hence,

Lζ
∗Lζ =

∥∥∥∆
(√

di‖ζ‖−di
)
h(ζ)

∥∥∥2

· Idζ⊥ .

Therefore we get:

(Dĥt(ζ)|ζ⊥)∗ ·Dĥt(ζ)|ζ⊥ =

(
1− t
t

)2 (
Kζ
∗ ·Kζ + Lζ

∗ · Lζ
)

=

=

(
1− t
t

)2 (
(Dh(ζ)|ζ⊥)∗ ·∆

(
‖ζ‖−2di+2

)
·Dh(ζ)|ζ⊥+

+
∥∥∥∆
(√

di‖ζ‖−di
)
h(ζ)

∥∥∥2

Idζ⊥
)
.

The proof follows.

Lemma 3.3.5. One has∣∣∣det
[
D(π1 ◦ Φt)(ĥt(ζ), ζ) · (IdH(d)

,−(Dĥt(ζ)|ζ⊥)∗)
]∣∣∣ =

= | det(Idζ⊥ + (Dĥt(ζ)|ζ⊥)∗ ·Dĥt(ζ)|ζ⊥)| t2n.

Proof. First we find an expression for the term inside the determinant. For short,

let

ψ = D(π1 ◦ Φt)(ĥt(ζ), ζ) · (IdH(d)
,−(Dĥt(ζ)|ζ⊥)∗).

One gets,[
∂

∂f
(π1 ◦ Φt)(f, ζ)

]
(ḟ) = ḟ − (1− t)∆

(
〈·, ζ〉di
〈ζ, ζ〉di

)
ḟ(ζ), (3.3.10)

and[
∂

∂ζ
(π1 ◦ Φt)(f, ζ)

]
(ζ̇) = (3.3.11)

− (1− t)

[
∆

(
〈·, ζ〉di
〈ζ, ζ〉di

)
·Df(ζ)ζ̇ + ∆

(
di〈·, ζ〉di−1〈·, ζ̇〉
〈ζ, ζ〉di

)
f(ζ)

]
.

Since ĥt(ζ)(ζ) = h(ζ)/t, and D[ĥt(ζ)](ζ)|ζ⊥ = Dh(ζ)|ζ⊥ , from (3.3.10) and
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(3.3.11) we get

ψ(ḟ) = ḟ − (1− t)∆
(
〈·, ζ〉di
〈ζ, ζ〉di

)
ḟ(ζ)+

+ (1− t)
[
∆

(
〈·, ζ〉di
〈ζ, ζ〉di

)
·Dh(ζ)|ζ⊥ · (Dĥt(ζ)|ζ⊥)∗ḟ+

+ ∆

(
di〈·, ζ〉di−1〈·, (Dĥt(ζ)|ζ⊥)∗ḟ〉

〈ζ, ζ〉di

)
h(ζ)

t

]
,

for all ḟ ∈ H(d). That is, with the notation Kζ and Lζ given in (3.3.6) and (3.3.7),

we get

ψ(ḟ) = ḟ − (1− t)
[
∆

(
〈·, ζ〉di
〈ζ, ζ〉di

)
ḟ(ζ)−

(
1− t
t

)
Kζ

(
Kζ
∗ + Lζ

∗)ḟ]+ (3.3.12)

+

(
1− t
t

)2

Lζ
(
Kζ
∗ + Lζ

∗)ḟ
for all ḟ ∈ H(d).

Note that ψ = IdH(d)
− L, for a certain operator L. Therefore det(ψ) =

det((IdH(d)
− L)|ImL), where last determinant must be understood as the deter-

minant of the linear operator (IdH(d)
− L)|ImL : ImL→ ImL.

The image of L is decomposed into two orthogonal subspaces, namely:

Cζ :=

{
∆

(
〈·, ζ〉di
〈ζ, ζ〉di

)
a : a = (a1, . . . , an)T ∈ Cn

}
;

Rζ :=
{
Lζ(w) : w ∈ TζP(Cn+1)

}
.

Note that ImKζ = Cζ ⊂ kerLζ
∗ and ImLζ = Rζ ⊂ kerKζ

∗.

Consider the linear map

τ : Cn → Cζ , τ(b) = ∆

(
〈·, ζ〉di
〈ζ, ζ〉di

)
·∆(‖ζ‖di)b, b ∈ Cn.

Note that, τ−1
(

∆
(
〈·,ζ〉di
〈ζ,ζ〉di

)
a
)

= ∆(‖ζ‖−di) · a. Since

‖∆
(
〈·, ζ〉di
〈ζ, ζ〉di

)
a‖ = ‖∆(‖ζ‖−di) · a‖,
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we conclude that τ is a linear isometry between Cn and Cζ .

Let

η : TζP(Cn+1)→ Rζ , η(·) =
‖ζ‖∥∥∆

(√
di‖ζ‖−di

)
h(ζ)

∥∥Lζ(·).
Since

‖Lζ(w)‖ =
∥∥∥∆
(√

di‖ζ‖−di
)
h(ζ)

∥∥∥ · ‖w‖‖ζ‖ ,
for all w ∈ TζP(Cn+1), we get that η is a linear isometry between TζP(Cn+1) and

Rζ .

Let ΠCζψ and ΠRζψ be the orthogonal projections on Cζ and Rζ respectively.

Then | det(ψ)| is equal to the absolute value of the determinant of(
A B

C D

)
,

where A = τ−1 ◦ ΠCζψ|Cζ ◦ τ , B = τ−1 ◦ ΠCζψ|Rζ ◦ η, C = η−1 ◦ ΠRζψ|Cζ ◦ τ and

D = η−1 ◦ ΠRζψ|Rζ ◦ η.

Straightforward computations show that

A = t IdCn +
(1− t)2

t
∆(‖ζ‖−di+1) ·Dh(ζ)|ζ⊥ · (Dh(ζ)|ζ⊥)∗ ·∆(‖ζ‖−di+1);

B =
(1− t)2

t
‖∆(

√
di‖ζ‖−di)h(ζ)‖∆(‖ζ‖−di+1) ·Dh(ζ)|ζ⊥ ;

C =

(
1− t
t

)2

‖∆(
√
di‖ζ‖−di)h(ζ)‖ (Dh(ζ)|ζ⊥)∗ ·∆(‖ζ‖−di+1);

D =

(
1 +

(
1− t
t

)2

‖∆(
√
di‖ζ‖−di)h(ζ)‖2

)
Idζ⊥ .

Since D is invertible, we may write(
A B

C D

)
=

(
A−BD−1C B

0 D

)
·

(
I 0

D−1C I

)
,

hence det

(
A B

C D

)
= detD · det(A−BD−1C).
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Thus,

| det(ψ)| = t2n

(
1 +

(
1− t
t

)2

·
∥∥∥∆
(√

di‖ζ‖−di
)
h(ζ)

∥∥∥2
)2n

·∣∣∣∣∣det

(
IdCn +

(
1−t
t

)2
∆(‖ζ‖−di+1) ·Dh(ζ)|ζ⊥ · (Dh(ζ)|ζ⊥)∗ ·∆(‖ζ‖−di+1)

1 +
(

1−t
t

)2 ·
∥∥∆
(√

di‖ζ‖−di
)
h(ζ)

∥∥2

)∣∣∣∣∣
2

Observe that

(Dh(ζ)|ζ⊥)∗ ·∆
(
‖ζ‖−di+1

)2 ·Dh(ζ)|ζ⊥ =(
∆
(
‖ζ‖−di+1

)
·Dh(ζ)|ζ⊥

)∗
·
(

∆
(
‖ζ‖−di+1

)
·Dh(ζ)|ζ⊥

)
Then, proof follows from Lemma 3.3.4 and Sylvester theorem (3.3.5).

Proof of Proposition 3.3.1. The jacobian of Ĥt : P(Cn+1)→ H(d) × P(Cn+1) at ζ

is given by ∣∣∣det(Idζ⊥ + (Dĥt(ζ)|ζ⊥)∗ ·Dĥt(ζ)|ζ⊥
∣∣∣1/2 .

Then, the proof follows from Lemma 3.3.2 and Lemma 3.3.5.

3.4 Numerical Experiments

In this section we present some numerical experiments for n = 1 and d = 7

that were performed by Carlos Beltrán on the Altamira supercomputer at the

Universidad de Cantabria.

Recall from Theorem 5 that

Θ(h, η) =

∫
ζ∈B(h,η)

(
‖h‖2 − ‖∆(‖ζ‖−di)h(ζ)‖2

)1/2

‖∆(‖ζ‖−di)h(ζ)‖2n−1
·

· Γ(‖∆(‖ζ‖−di)h(ζ)‖2/2, n)e‖∆(‖ζ‖−di )h(ζ)‖2/2 dζ.

Let

Θ(h) =

∫
ζ∈P(Cn+1)

1

‖∆(‖ζ‖−di)h(ζ)‖2n−1
· e‖∆(‖ζ‖−di )h(ζ)‖2/2 dζ.
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(Recall item (d) after the statement of the main theorem).

Note that ∑
η:h(η)=0

Θ(h, η) ≤ ‖h‖Γ(n) Θ(h).

Table 3.1 concerns a degree 7 polynomial h, chosen at random with the

Bombieri-Weyl distribution. The condition numbers µ(h, η), Θ(h, η) and vol(B(h, η)),

at each root η of h are computed. Moreover, Θ(h) is computed.

The data of the chosen random polynomial is given by:

a7 = −0.152840− i0.757630

a6 = 1.283080 + i0.357670

a5 = 2.000560 + i3.302700

a4 = 13.004500 + i0.203300

a3 = −1.138140 + i7.094290

a2 = 3.110090 + i2.618830

a1 = 0.282940 +−i0.276260

a0 = −0.316220 + i0.036590,

One gets ‖h‖ = 2.9631 and Θ(h) = 7.624646.

Roots in C µ(h, ·) Θ(h, ·) vol(B(h, ·))
3.260883− i1.658800 1.712852 1.487095 0.140509π
−2.357860− i1.329208 1.738380 1.728768 0.138576π
−0.210068 + i1.868947 1.608231 1.586398 0.144054π
0.227994− i0.782004 1.909433 1.544021 0.125685π
−0.044701 + i0.384342 3.231554 3.152883 0.147277π
−0.308283 + i0.049618 3.183603 2.793696 0.152433π
0.213950− i0.068700 2.948318 2.647258 0.151466π

Table 3.1: Degree 7 random polynomial.

In Figure 3.1 we have plotted, using GNU Octave, the basins B(h, η) at each

root η of the chosen random polynomial h are plotted, in C and in the Riemann

sphere,.
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Figure 3.1: The basins B(h, η) in C and in the Riemann sphere of the degree 7
random polynomial (GNU Octave).

110



3.4 Numerical Experiments

In Table 3.2 the same quantities are computed for the polynomial given by

a0 = −1, a1 = . . . = a6 = 0, a7 = 1. In this case the roots are the 7th roots of

unity, and it is not difficult to see that the actual values of µ(h, η), Θ(h, η) and

vol(B(h, η)) are constant at the roots of h by symmetry. This example illustrate

the extent of accuracy of the computations.

Roots in C µ(h, ·) Θ(h, ·) vol(B(h, ·))
−0.900969 + i0.433884 3.023716 2.210393 0.128982π
−0.900969− i0.433884 3.023716 2.624508 0.153846π
−0.222521 + i0.974928 3.023716 2.326541 0.135198π
−0.222521− i0.974928 3.023716 2.371825 0.141414π
1.000000 + i0.000000 3.023716 2.867733 0.156954π
0.623490 + i0.781831 3.023716 2.136386 0.135198π
0.623490− i0.781831 3.023716 2.551867 0.148407π

Table 3.2: h(z) = z7 − 1.

In this case we get ‖h‖ =
√

2 and Θ(h) = 13.157546.

The errors for the root of unity case in the third column are of the order of

25%. But 25% does not seem enough to explain the variation in the computed

quantities in the third column of the random example where the ratio of the max

to min is greater than 2. So it is likely that they are not all equal. On the other

hand, the ratios of the volumes of the basins in the fourth columns of the random

and roots of unity examples do seem of the same order of magnitude. So perhaps

they are all equal? Also,the graphics of the basins are very encouraging in the

random case. There appear to be 7 connected regions with a root in each. So

there is some hope that this is true in general. That is there may generically be

a root in each connected component of the basins and all these basins may have

equal volume. This would be very interesting and would be very good start on

understanding the integrals. It would be good to have some more experiments

and even better some theorems.
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Figure 3.2: The basins B(h, η) in C and in the Riemann sphere for h(z) = z7− 1
(GNU Octave).
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Appendix A

Stochastic Perturbations and

Smooth Condition Numbers

In this appendix it is defined a new condition number adapted to directionally

uniform perturbations in a general framework of maps between Riemannian man-

ifolds. The definitions and theorems can be applied to a large class of problems.

The relation with the classical condition number in many interesting examples is

studied.

A.1 Introduction and Main Result

Let X and Y be two real (or complex) Riemannian manifolds of real dimensions

m and n (m ≥ n) associated respectively to some computational problem, where

X is the space of inputs and Y is the space of outputs.

Recall fromt the Introduction that V ⊂ X×Y is the solution variety; π1 : V→
X and π2 : V→ Y are the canonical projections; Σ′ and Σ are the ill-posed variety

and the discriminant variety respectively.

When dimV = dimX, for each (x, y) ∈ V \ Σ′, we have the solution map

S (x, y) : Ux → Uy defined between some neighborhoods Ux and Uy of x ∈ X and

y ∈ Y respectively.

Let us denote by 〈·, ·〉x and 〈·, ·〉y the Riemannian (or Hermitian) inner product

in the tangent spaces TxX and TyY at x and y respectively.
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Recall from the Introduction that the condition number at (x, y) ∈ V \ Σ′ is

given by:

µ(x, y) := max
ẋ∈TxX
‖ẋ‖2x=1

‖DS (x)ẋ‖y. (A.1.1)

See the Introduction for references about the role of the condition number in

numerical analysis and complexity of algorithms.

In many practical situations, there exists a discrepancy between worst case

theoretical analysis and observed accuracy of an algorithm. There exist sev-

eral approaches that attempt to rectify this discrepancy. Among them we find

average-case analysis (see Edelman [1989], Smale [1985]) and smooth analysis

(see Spielman & Teng [2002], Bürgisser et al. [2006], Wschebor [2004]). For a

comprehensive review on this subject with historical notes see Bürgisser [2009].

In many problems, the space of inputs has a much larger dimension than

the one of the space of outputs (m � n). Then, it is natural to assume that

infinitesimal perturbations of the input will produce drastic changes in the output

only when they are performed in a few directions. Then, a possibly different

approach to analyze accuracy of algorithms is to replace “worst direction” by a

certain mean over all possible directions. This alternative was already suggested

and studied in Weiss et al. [1986] in the case of linear system solving Ax = b,

and more generally, in Stewart [1990] in the case of matrix perturbation theory,

where the first-order perturbation expansion is assumed to be random.

In this chapter we extend this approach to a large class of computational

problems, restricting ourselves to the case of directionally uniform perturbations.

Generalizing the concept introduced in Weiss et al. [1986] and Stewart [1990],

we define the pth-stochastic condition number at (x, y) as:

µst
[p](x, y) :=

[
1

vol(Sm−1
x )

∫
ẋ∈Sm−1

x

‖DS (x)ẋ‖py dSm−1
x (ẋ)

]1/p

, (p = 1, 2, . . .),

(A.1.2)

where vol(Sm−1
x ) = 2πm/2

Γ(m/2)
is the measure of the unit sphere Sm−1

x in TxX, and

dSm−1
x is the induced volume element. We will be mostly interested in the case

p = 2, which we simply write µst and call it stochastic condition number.
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A.1 Introduction and Main Result

Before stating the main theorem, we define the Frobenius condition number

as:

µF (x, y) := ‖DS (x)‖F =
√
σ2

1 + · · ·+ σ2
n

where ‖ · ‖F is the Frobenius norm and σ1, . . . , σn are the singular values of the

condition operator. Note that µF (x, y) is a smooth function in V \ Σ′, where its

differentiability class depends on the differentiability class of G.

Theorem 6.

µst
[p](x, y) =

1√
2

[
Γ
(
m
2

)
Γ
(
m+p

2

)]1/p

· E(‖ησ1,...,σn‖p)1/p,

where ‖ ·‖ is the Euclidean norm in Rn and ησ1,...,σn is a centered Gaussian vector

in Rn with diagonal covariance matrix Diag(σ2
1, . . . , σ

2
n).

In particular, for p = 2

µst(x, y) =
µF (x, y)√

m
. (A.1.3)

Remark A.1.1. Since µ(x, y) ≤ µF (x, y) ≤
√
n · µ(x, y), we have from (A.1.3)

that
1√
m
· µ(x, y) ≤ µst(x, y) ≤

√
n

m
· µ(x, y).

This result is most interesting when m� n, for in that case µst(x, y)� µ(x, y).

Thus, in these cases one may expect much better stability properties than those

predicted by classical condition numbers.

Remark A.1.2. In many situations, one needs to analyze how the condition

number varies in order to study (or to improve) the accuracy of an algorithm. In

this way, the replacement of the usual non-smooth condition number µ given in

(A.1.1) by a smooth one, has an important theoretical and practical application.

In numerical analysis, many authors are interested in relative errors. Thus,

when (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y) are real (or complex) finite dimensional vector

spaces with an inner (or Hermitian) product, instead of considering the (absolute)

condition number (A.1.1), one can take the relative condition number defined as:

µrel(x, y) :=
‖x‖X
‖y‖Y

· µ(x, y), x 6= 0, y 6= 0;
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and the relative Frobenius condition number as:

µrelF (x, y) :=
‖x‖X
‖y‖Y

· µF (x, y), x 6= 0, y 6= 0,

where ‖ · ‖X and ‖ · ‖Y are the respective induced norms. In the same way, we

define the relative pth-stochastic condition number as

µrel
[p]
st (x, y) :=

‖x‖X
‖y‖Y

· µst[p](x, y), (p = 1, 2, . . .). (A.1.4)

For the case p = 2 we simply write µrelst and call it relative stochastic condition

number.

In this case, we can define Riemannian structures on X \ {0} and Y \ {0} in

the following way: for each x ∈ X, x 6= 0, and y ∈ Y, y 6= 0, we define

〈·, ·〉x :=
〈·, ·〉X
‖x‖2

X

, and 〈·, ·〉y :=
〈·, ·〉Y
‖y‖2

Y

.

Notice that, in these Riemannian structures the usual condition number defined in

(A.1.1) turns to be the relative condition number defined before. Then, Theorem

6 remains true if one exchanges the (absolute) condition number by the relative

condition number. In particular,

µrelst(x, y) :=
µrelF (x, y)√

m
.

A.2 Componentwise Analysis

In the case Y = Rn we define the kth-componentwise condition number at (x, y) ∈
V \ Σ′ as:

µ(x, y; k) := max
ẋ∈TxX
‖ẋ‖2x=1

|(DS (x)ẋ)k|, (k = 1, . . . , n), (A.2.1)

where | · | is the absolute value and wk indicates the kth-component of the vector

w ∈ Rn.
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A.2 Componentwise Analysis

Following Weiss et al. [1986] for the linear case, we define the pth-stochastic

kth-componentwise condition number as:

µst
[p](x, y; k) :=

[
1

vol(Sm−1
x )

∫
ẋ∈Sm−1

x

|(DS (x)ẋ)k|p dSm−1
x (ẋ)

]1/p

, (p = 1, 2, . . .).

(A.2.2)

Then we have:

Proposition A.2.1.

µst
[p](x, y; k) =

[
1√
π
·

Γ
(
m
2

)
Γ
(
m+p

2

) · Γ(p+ 1

2

)]1/p

· µ(x, y; k).

In particular,

µst(x, y; k) =
µ(x, y; k)√

m
.

Proof. Observe that µst
[p](x, y; k) is the pth-stochastic condition number for the

problem of finding the kth-component of G = (G1, . . . , Gn) : X → Rn. Theorem

6 applied to Gk yields

µst
[p](x, y; k) =

1√
2

[
Γ
(
m
2

)
Γ
(
m+p

2

)] 1
p

· E(|ησ1 |p)1/p

where σ1 = ‖DSk(x)‖ = µ(x, y; k). Then,

E(|ησ1|p)1/p = µ(x, y; k) · E(|η1|p)1/p,

where η1 is a standard normal in R. Finally,

E(|η1|p) =
2√
2π

∫ ∞
0

ρpe−ρ
2/2 dρ =

2√
2π

2
p−1

2 Γ(
p+ 1

2
),

and the proposition follows.
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A.3 Proof of the main Theorem

In the case of complex manifolds, the condition matrix turns to be an n × n

complex matrix. In what follows, we identify it with the associated 2n× 2n real

matrix. We focus on the real case.

The main theorem follows immediately from Lemma A.3.1 and Proposition

A.3.1 below.

Lemma A.3.1. Let η be a Gaussian standard random vector in Rm. Then

µst
[p](x, y) =

1√
2

[
Γ
(
m
2

)
Γ
(
m+p

2

)]1/p

· [E(‖DS (x)η‖p)]1/p ,

where E is the expectation operator and ‖ · ‖ is the Euclidean norm in Rn.

Proof. Let f : Rm → R be the continuous function given by

f(v) = ‖DS (x)v‖.

Then,

[E(‖DS (x)η‖p)]1/p =

[
1

(2π)m/2

∫
Rm

f(v)p · e−‖v‖2/2 dv
]1/p

.

Integrating in polar coordinates, we get

E(‖DS (x)η‖p) =
Im+p−1

(2π)m/2
·
∫
Sm−1

fp dSm−1, (A.3.1)

where

Ij =

∫ +∞

0

ρj e−ρ
2/2 dρ, j ∈ N.

Making the change of variable u = ρ2/2 we obtain

Ij = 2
j−1

2 Γ(
j + 1

2
),

therefore

Im+p−1 = 2
m+p−2

2 · Γ
(
m+ p

2

)
. (A.3.2)

Then, joining together (A.3.1) and (A.3.2) we obtain the result.
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Proposition A.3.1. If η is a Gaussian standard random vector in Rm, then

E(‖DS (x)η‖p) = E(‖ησ1,...,σn‖p),

where ησ1,...,σn is a centered Gaussian vector in Rn with diagonal covariance matrix

Diag(σ2
1, . . . , σ

2
n), and σ1, . . . , σn are the singular values of DS (x).

Proof. Let DS (x) = UDV be a singular value decomposition of DS (x), where

V and U are orthogonal transformations of Rm and Rn respectively, and D :=

Diag(σ1, . . . , σn). By the invariance of the Gaussian distribution under the action

of the orthogonal group in Rm, V η is again a Gaussian standard random vector

in Rm. Then,

E(‖DS (x)η‖p) = E(‖UDη‖p),

and by the invariance under the action of the orthogonal group of the Euclidean

norm, we get

E(‖DS (x)η‖p) = E(‖Dη‖p).

FinallyDη is a centered Gaussian vector in Rn with covariance matrixDiag(σ2
1, . . . , σ

2
n),

and the proposition follows. For the case p = 2,

µst(x, y) =
[
E
(
σ2

1η
2
1 + . . .+ σ2

nη
2
n

)]1/2
,

where η1, . . . , ηn are i.i.d. standard normal in R. Then,

µst(x, y) =

(
n∑
i=1

σ2
i

)1/2

= µF (x, y).

A.4 Examples

In this section we will compute the stochastic condition number for different prob-

lems: systems of linear equations, eigenvalue and eigenvector problems, finding

kernels of linear transformations and solving polynomial systems of equations.
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The first two have been computed in Stewart [1990] and are an easy consequence

of Theorem 6 and the usual condition number µ.

The computations of µ for the case of systems of linear equations, eigenvalue

and eigenvector problems, and solving polynomial systems of equations are fairly

well-known. However, as far as we know, previous results of µ for the problem

of finding kernels of linear transformations only offers bounds (see Kahan [2000],

Stewart & Sun [1990], Beltrán & Pardo [2007]). In Section A.4.3 we gave an

explicit computation of µ for this problem.

In what follows, we will drop the output in the notation of condition number

when the input-output map is univalued.

A.4.1 Systems of Linear Equations

We consider the problem of solving for y ∈ Rn the system of linear equations

Ay = b, y 6= 0, where A ∈ Rn×n (the space of n× n real matrices), and b ∈ Rn.

If we assume that b is fixed, then, we can consider the input space X = Rn×n

equipped with the Frobenius inner product

〈A,B〉F = trace(ABt), (A.4.1)

where Bt is the transpose of B, and the output space Y = Rn equipped with the

Euclidean inner product. It is easy to see that Σ is the subset of non-invertible

matrices. Then, the map G : Rn×n\Σ→ Rn is globally defined and differentiable,

namely

G(A) = A−1b (= y).

By implicit differentiation,

DS (A)Ȧ = −A−1Ȧy. (A.4.2)

Is easy to see from (A.4.2) that

µ(A) = ‖A−1‖ · ‖y‖.
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Let H be the orthogonal complement of kerDS (A), i.e. H is the set of rank

one matrices of the form uyt, u ∈ Rn, where yt denotes the transpose of y ∈ Rn.

Then, the map u 7→ uyt/‖y‖ is a linear isometry between Rn and H. Under this

identification, is easy to see from (A.4.2) that DS (A)|H coincides with the map

−‖y‖ · A−1, from where we conclude,

µF (A) = ‖A−1‖F · ‖y‖.

Then, from Theorem 6 we get

µst(A) =
‖A−1‖F · ‖y‖

n
,

and therefore

µst(A) ≤ µ(A)√
n
. (A.4.3)

A similar result was proved in Stewart [1990].

For the general case, we consider X = Rn×n × Rn equipped with the product

metric structure of the Frobenius inner product in Rn×n and the Euclidean inner

product in Rn. Then,

G : Rn×n \ Σ× Rn → Rn satisfies G(A, b) = A−1b.

Similar to the preceding case, we have µ(A, b) = ‖A−1‖·
√

1 + ‖y‖2 and µF (A, b) =

‖A−1‖F ·
√

1 + ‖y‖2. Again from Theorem 6 we get

µst(A, b) =
‖A−1‖F ·

√
1 + ‖y‖2

√
n2 + n

,

and therefore

µst(A, b) ≤
µ(A, b)√
n+ 1

.

For the kth-componentwise condition number, we have that

µst
[p]((A, b); k) =

 1√
π
·

Γ
(
n2+n

2

)
Γ
(
n2+n+p

2

) · Γ(p+ 1

2

)1/p

· µ((A, b); k),
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and

µst((A, b); k) =
µ((A, b); k)√

n2 + n
.

A similar result was proved in Weiss et al. [1986], where the average in (A.2.2)

is performed over the unit ball instead of the unit sphere.

In Edelman [1989], it is proved that the expected value of the relative condition

number µrel(A) = ‖A‖ · ‖A−1‖ of a random matrix A whose elements are i.i.d

standard normal, satisfies:

E(log µrel(A)) = log n+ c+ o(1),

as n → ∞, where c ≈ 1.537. If we consider the relative stochastic condition

number defined in (A.1.4), we get from (A.4.3)

E(log µrelst(A)) ≤ 1

2
log n+ c+ o(1),

as n→∞.

A.4.2 Eigenvalue and Eigenvector Problem

In this subsection we follow the approach given in Shub & Smale [1996]. However,

we alert the reader that in Chapter 1 we developed a new approach for the

eigenvalue problem which exploit other natural symmetries of the problem.

We focus on the complex case. The real case is analogue.

We consider the problem of solving for (λ, v) ∈ C×Cn the system of equations

(λIn − A)v = 0, v 6= 0, where A ∈ Cn×n (the space of n× n complex matrices).1

Since this system of equations is homogenous in v, we define the solution

variety associated to this problem as:

V = {(A, v, λ) ∈ Cn×n × P(Cn)× C : (λIn − A)v = 0},

where P(Cn) denotes the projective space associated with Cn.

1In Chapter 1 we define a different framework for the eigenvalue problem.
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Let X = Cn×n be equipped with the Frobenius Hermitian inner product, i.e.

the complex analogue of (A.4.1), and Y = P(Cn) × C be equipped with the

canonical product metric structure.

Then, for (A, v, λ) ∈ V \ Σ′, i.e. when λ is a simple eigenvalue (cf. Wilkinson

Wilkinson [1972]), the condition linear operators DS1 and DS2 associated with

the eigenvector and eigenvalue problem are:

DS1(A)Ȧ = (πv⊥(λIn − A)|v⊥)−1
(
πv⊥Ȧv

)
and DS2(A)Ȧ =

〈Ȧv, u〉
〈v, u〉

,

where πv⊥ denotes the orthogonal projection onto v⊥, and u is some left eigen-

vector associated with λ, that is, u∗A = λu∗.

The associated condition numbers are:

µ1(A, v) =
∥∥(πv⊥(λIn − A)|v⊥)−1

∥∥ and µ2(A, λ) =
‖v‖ · ‖u‖
|〈v, u〉|

. (A.4.4)

From our Theorem 6, we get the respective stochastic condition numbers:

µ1st(A, v) =
1

n

∥∥(πv⊥(λIn − A)|v⊥)−1
∥∥
F
≤ 1√

n
µ1(A, v),

µ2st(A, λ) =
1

n
µ2(A, λ).

A similar result for µ2st(A, λ) was proved in Stewart Stewart [1990].

A.4.3 Finding Kernels of Linear Transformations

For the sake of completeness of the exposition we focus on the complex case. All

ideas carry over naturally on the real case.

Let Ck×p be the linear space of k × p complex matrices with the Frobenius

Hermitian inner product, and Rr ⊂ Ck×p be the subset of matrices of rank r.

Given A ∈ Rr we consider the problem of finding the subspace F of Cp such that

Ax = 0 for all x ∈ F , i.e. finding the kernel subspace ker(A) of A. For this

purpose, we introduce the Grassmannian manifold Gp,` of complex subspaces of

dimension ` in Cp, where ` = p− r is the dimension of ker(A).
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The input space X = Rr is a smooth submanifold of Ck×p of complex dimen-

sion (k+ p)r− r2 (see Dedieu [2006]). Thus, it has a natural Hermitian structure

induced by the Frobenius Hermitian inner product on Ck×p.

In what follows, we identify Gp,` with the quotient Sp,`/U` of the Stiefel man-

ifold

Sp,` := {M ∈Mp,`(C) : M∗M = I}

by the unitary group U` ⊂M`(C), which acts on the right of Sp,` in the natural

way (see Dedieu [2006]). Then, the complex dimension of the output space Y =

Gp,` is (p− r)r. (We will use the same letter to represent an element of Sp,` and

its class in Gp,`).

The manifold Sp,` has a canonical Riemannian structure induced by the real

part of the Frobenius Hermitian structure in Mp,`(C). On the other hand, U` is

a Lie group of isometries acting on Sp,`. Therefore, Gp,` is a homogeneous space

(see Gallot et al. [2004]), with a natural Riemannian structure that makes the

quotient projection π : Sp,` → Gp,` a Riemannian submersion. More precisely, the

orbit of M ∈ Sp,` under the action of the unitary group U`, namely, π−1(M) =

{MU : U ∈ U`}, defines a smooth submanifold of Sp,`. In this way, the tangent

space TMSp,` splits into two orthogonally complementary subspaces, namely,

TMSp,` = TMπ
−1(M)⊕

(
TMπ

−1(M)
)⊥
,

where TMπ
−1(M) is the tangent space of π−1(M) at M . Then, we can naturally

identify the tangent space TMGp,` with (TMπ
−1(M))

⊥
with the inherited Rieman-

nian structure induced by Sp,`. Moreover, in this fashion, we can carry out all

computations over the quotient manifold Gp,` onto Sp,`.

To compute the derivative of the input-output map G : Rr → Gp,` which maps

A onto ker(A), notice that if M ∈ Sp,` is any representative in π−1(ker(A)), then

AM = 0. Then, implicit differentiation in the lift Sp,` yields

ȦM + A(DS (A)Ȧ) = 0,
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where Ȧ ∈ TARr, and DS (A)Ȧ ∈ TMGp,`. Then,

DS (A)Ȧ = −A†ȦM, (A.4.5)

where A† is the Moore-Penrose inverse of A.

We have concluded that the condition operator DS (A) is a linear map from

TARr (with the Hermitian structure induced by Mk,p(C)) onto (TMπ
−1(M))

⊥

(with the inherited Riemannian structure of Sp,`), and given by equation (A.4.5).

One way to compute the singular values of the condition operator described in

(A.4.5), is to take an orthonormal basis in Ck×p which diagonalizes A. From the

singular value decomposition, there exists positive numbers σ1 ≥ · · · ≥ σr > 0

and orthonormal basis {u1, . . . , uk} of Ck and {v1, . . . , vp} of Cp, such that, A =∑r
i=1 σiuiv

∗
i and A† =

∑r
i=1 σ

−1
i viu

∗
i . Here w∗ denotes the conjugate transpose

of the vector w. Thus, {uiv∗j : i = 1, . . . , k; j = 1, . . . , p} is an orthonormal

basis of Ck×p which diagonalizes A. In this basis the tangent space TARr is the

orthogonal complement of the subspace generated by {uiv∗j : i = r+1, . . . , k; j =

r + 1, . . . , p}.

Acting by an element U ∈ U`, if necessary, one can assume M =
∑`

h=1 vh+re
∗
h,

where {e1, . . . , e`} is the canonical basis of C`. Observe that ‖A†ȦM‖F ≤ ‖A†‖ ·
‖ȦM‖F . Then,

µ(A) = ‖A†‖,

where the maximum is attained, for example, at Ȧ = urv
∗
r+1 ∈ TARr.

Observe that µF (A)2 =
∑

i,j ‖DS (A)uiv
∗
j‖2

F , where the sum runs over all

elements uiv
∗
j ∈ TARr. As uiv

∗
j ∈ kerDS (A), for i = r+1, . . . , p and j = 1, . . . , k,

then,

µF (A)2 =
r∑
i=1

p∑
j=1

‖A†uiv∗jM‖2
F =

r∑
i=1

p∑
j=r+1

‖σ−1
i vie

∗
j−r‖2

F = (p− r) ·
r∑
i=1

σ−2
i .

That is,

µF (A) =
√
p− r · ‖A†‖F .
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From our Theorem 6,

µst(A) =

√
p− r√

(k + p− r)r
· ‖A†‖F ≤

√
p(p− r)

(k + p− r)r
· µ(A).

In Beltrán [2011], it is proved that

E(log µrel(A) : A ∈ Rr) ≤ log

[
k + p− r

k + p− 2r + 1

]
+ 2.6,

where the expected value is computed with respect to the normalized naturally

induced measure in Rr. Our Theorem 6 immediately yields a bound for the

stochastic relative condition number, namely,

E(log µrelst(A) : A ∈ Rr) ≤
1

2
log

[
(k + p− r)r

(k + p− 2r + 1)2p(p− r)

]
+ 2.6.

A.4.4 Finding Roots Problem I: Univariate Polynomials

We start with the case of one polynomial in one complex variable. Let X = Pd =

{f : f(z) =
∑d

i=0 fiz
i, fi ∈ C}. Identifying Pd with Cd+1, we can define two

standard Hermitian inner products in the space Pd:

- Weyl inner product:

〈f, g〉W :=
d∑
i=0

figi

(
d

i

)−1

; (A.4.6)

- Canonical Hermitian inner product:

〈f, g〉Cd+1 :=
d∑
i=0

figi. (A.4.7)

The solution variety is given by V = {(f, z) ∈ Pd × C : f(z) = 0}, and Σ′ =

{(f, z) ∈ V : f ′(z) = 0}. Thus, by implicit differentiation,

DS (f)(ḟ) = − (f ′(ζ))
−1
ḟ(ζ).
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We denote by µW and µCd+1 the condition numbers with respect to the Weyl and

Hermitian inner product. The reader may check that

µW (f, ζ) =
(1 + |ζ|2)d/2

|f ′(ζ)|
and µCd+1(f, ζ) =

√∑d
i=0 |ζ|2i

|f ′(ζ)|
,

(for a proof see Blum et al. [1998], p. 228 ). From Theorem 6, we get:

µWst(f, ζ) =
1√

2(d+ 1)
µW (f, ζ), µCd+1st(f, ζ) =

1√
2(d+ 1)

µCd+1(f, ζ).

A.4.5 Finding Roots Problem II: Systems of Polynomial

Equations

We now study the case of complex homogeneous polynomial systems. Let Hd

be the space of homogeneous polynomials in n + 1 complex variables of degree

d ∈ N \ {0}. We consider Hd with the Hermitian inner product 〈·, ·〉d, namely,

the homogeneous analogous of the Weyl structure defined above (see Chapter 12

of Blum et al. [1998] for details).

Fix d1, . . . , dn ∈ N \ {0} and let H(d) = Hd1 × · · · ×Hdn be the vector space

of polynomial systems f : Cn+1 → Cn, f = (f1, . . . , fn), where fi ∈ Hdi . The

space H(d) is naturally endowed with the Hermitian inner product 〈f, g〉W =∑n
i=1〈fi, gi〉di .

Let X = P(H(d)) and Y = P(Cn+1), then the solution variety is given by V =

{(f, ζ) ∈ P(H(d))×P(Cn+1) : f(ζ) = 0}, and Σ′ = {(f, ζ) ∈ V : Df(ζ)|ζ⊥ is singular}.
We denote by N =

∑n
i=1

(
di+n
n

)
− 1 the complex dimension of X. We may

think of 2N as the size of the input.

Then, for (f, ζ) ∈ V \ Σ′, we have

DS (f)ḟ = −
(
Df(ζ)|ζ⊥

)−1
ḟ(ζ),

and the condition number is

µW (f, ζ) =
∥∥∥(Df(ζ)|ζ⊥

)−1
∥∥∥ ,
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where some norm 1 affine representatives of f and ζ have been chosen (cf. Blum

et al. [1998]).

For the complexity analysis of path-following methods it is convenient to con-

sider the normalized condition number defined by:

µnorm(f, ζ) =
∥∥∥(Df(ζ)|ζ⊥

)−1 ·Diag(d
1/2
1 , . . . , d1/2

n )
∥∥∥ ,

where Diag(d
1/2
1 , . . . , d

1/2
n ) denotes the diagonal matrix with entries d

1/2
1 , . . . , d

1/2
n .

(Notice that µnorm is the usual condition number for the slightly modified Her-

mitian inner product in H(d) given by 〈f, g〉norm =
∑n

i=1
1
di
〈fi, gi〉di .)

Associated with µnorm, we consider

µnorm(f)2 :=
1

D

∑
{ζ: f(ζ)=0}

µnorm(f, ζ)2, (A.4.8)

where D = d1 · · · dn is the number of projective solutions of a generic system.

The expected value of µ2
norm(f) is an essential ingredient in the complexity

analysis of path-following methods (cf. Shub & Smale [1996], Beltrán & Pardo

[2011], and recently Bürgisser & Cucker [2011]). In Beltrán & Pardo [2011] the

authors proved that

Ef
[
µnorm(f)2

]
≤ 8nN, (A.4.9)

where f is chosen at random with the Weyl distribution.

The relation between complexity theory and the stochastic condition number

is not clear yet. However, it is interesting to study the expected value of the

µst-analogue of equation (A.4.8), namely

µnormst(f)2 :=
1

D

∑
{ζ: f(ζ)=0}

µnormst(f, ζ)2.

Here µnormst(f, ζ) is the stochastic condition number for the modified condition

operator, given by

ḟ 7→
(
Df(ζ)|ζ⊥

)−1 ·Diag(d
1/2
1 , . . . , d1/2

n ) · ḟ(ζ).

(Notice that, µnormst(f, ζ) is the stochastic condition number for the modified
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Hermitian inner product in H(d) given by 〈·, ·〉norm).

From our Theorem 6 we get,

µnormst(f, ζ) ≤ µnorm(f, ζ)√
N/n

, Ef
[
µnormst(f))2

]
≤ 8n2.

Note that the last bound depends on the number of unknowns n, and not on the

size of the input N � n.
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Random System of Equations
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Chapter 4

Real Random Systems of

Polynomials

In this chapter, following Armentano [2011b], we review some recent results con-

cerning the expected number of real roots of random systems of polynomial equa-

tions. We begin giving an outline on Rice formulas for random fields. In the case

of polynomial random fields we show the relation of Rice formulas with other

technics to study the average number of solutions. At the end of this chapter we

recall some known results about the undetermined case, that is, when the random

system of equations has less equations than unknowns.

4.1 Introduction

Let us consider a system of m polynomial equations in m unknowns over R,

fi(x) :=
∑
‖j‖≤di

a
(i)
j x

j (i = 1, . . . ,m). (4.1.1)

The notation in (4.1.1) is the following: x := (x1, . . . , xm) denotes a point in

Rm, j := (j1, . . . , jm) a multi-index of non-negative integers, ‖j‖ =
∑m

h=1 jh,

xj = xj1 · · ·xjm , a
(i)
j = a

(i)
j1,...,jm

, and di is the degree of the polynomial fi.

We are interested in the solutions of the system of equations

fi(x) = 0, (i = 1, . . . ,m),
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lying in some subset V of Rm. We denote by N f (V ) that number, and N f :=

N f (Rm)

If we choose the coefficients {a(i)
j } at random , then N f (V ) becomes a random

variable.

The study of the expectation of the number of real roots of a random poly-

nomial started in the thirties with the work of Bloch & Pólya [1931]. Further

investigations were made by Littlewood & Offord [1938]. However, the first sharp

result is due to Kac [1943; 1949], who gives the asymptotic value

E
(
N f (R)

)
≈ 2

π
log d, as d→ +∞,

when the coefficients of the degree d univariate polynomial f are Gaussian cen-

tered independent random variables N(0, 1) (see the book by Bharucha-Reid &

Sambandham [1986]).

The first important result in the study of real roots of random system of

polynomial equations is due to Shub & Smale [1993b], where the authors com-

puted the expectation of N f (Rm) when the coefficients are Gaussian centered

independent random variables having variances:

E
[
(a

(i)
j )2

]
=

di!

j1! · · · jm! (di − ‖j‖)!
. (4.1.2)

Their result was

E
(
N f (Rm)

)
=
√
d1 · · · dm, (4.1.3)

that is, the square root of the Bézout number associated to the system. The

proof in Shub & Smale [1993b] is based on a double fibration manipulation of the

co-area formula (see formula (4.3.3) below).

The probability law of the Shub-Smale distribution has the simplifying prop-

erty of being invariant under the action of the orthogonal group in Rm. In Kostlan

[2002] one can find the classification of all Gaussian probability distributions over

the coefficients with this geometric invariant property.

Azäıs & Wschebor [2005] gave a new and deep insight to this problem, in-

troducing the Rice formula for this problem. In Azäıs & Wschebor [2005], Rice
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formula allows them to extend the Shub-Smale result to other probability distri-

butions over the coefficients. A general formula for E(N f (V )) when the random

functions fi (i = 1, . . . ,m) are stochastically independent and their law is cen-

tered and invariant under the orthogonal group on Rm can be found in Azäıs &

Wschebor [2005]. This includes Shub-Smale theorem as a special case.

Morever, Rice formula appears to be the instrument to consider a major prob-

lem in the subject which is to find the asymptotic distribution of N f (V ) (under

some normalization). The only published results of which the author is aware

concern asymptotic variances as m → +∞. (See Wschebor [2008] for a detailed

description in this direction).

4.2 Rice Formulas

We start this section giving an outline on Rice formulas for random fields. After

that we will focus on polynomial random fields. This case is much simpler than

the general theory of Rice formulas for random fields. At the end we will give an

heuristic of Rice formula for polynomial random fields. In Appendix B we give

a brief exposition of the main concepts about probability theory and stochastic

processes used in this dissertation.

Let U ⊂ Rm be a Borel subset, and let Z : U → Rm be a random field, that

is, a collection {Z(x) : x ∈ U} of random vectors defined on some probability

space (Ω,A, P ).

Assume that the trajectories of the random field Z are regular. Given a value

u ∈ Rm, we denote NZ
u (U) the number of roots of Z(x) = u lying in the subset

U . Then, NZ
u (U) : Ω→ N∪{+∞} is a random variable. Rice formulas allow one

to express the kth-moment of NZ
u (U) by an integral over Uk of a function that

depends on the joint distribution of the process and its derivative. (See Azäıs &

Wschebor [2009]).

More precisely, we have:

Theorem 7 (Rice Formula for the Expectation). Let Z : U → Rm be a random

field, U ⊂ Rm be an open set, and let u ∈ Rm. Assume that
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1. Z is Gaussian;

2. Almost surely the trajectories x 7→ Z(x) are C1;

3. For each x ∈ U , Z(x) has non-degenerate distribution, that is Var(Z(x)) is

positive definite;

4. The event {∃x ∈ U : Z(x) = u, det(DZ(x)) = 0} has probability zero.

Then, one has

E(NZ
u (U)) =

∫
U

E
(
| det(DZ(x)|

∣∣Z(x) = u
)
pZ(x)(u) dx. (4.2.1)

Here, pZ(x)(u) is the density of the random variable Z(x) at u, and E(ξ|η = y)

is the conditional expectation of ξ given the value of η at u (see Appendix B.2).

Theorem 8 (Rice Formula for the kth-moment). Let k ≥ 2 be an integer. As-

sume the same hypotheses as in Theorem 7 except that 3. is repalced by

3’. For x1, . . . , xk ∈ U distinct values, the distribution of (Z(x1), . . . , Z(xk))

does not degenerate in (Rm)k.

Then, one has

E
(
NZ
u (U) (NZ

u (U)− 1) · · · (NZ
u (U)− k + 1)

)
= (4.2.2)

=

∫
Uk

E

(
k∏
i=1

| detDZ(xi)|
∣∣Z(x1) = . . . Z(xk) = u

)
·

· p(Z(x1),...,Z(xn))(u, . . . , u) dx1 . . . dxk.

Theorem 9 (Expected Number of Weighted Roots). Let Z be a random field

that verifies the hypotheses of Theorem 7. Moreover let g : C(U,Rm)×U → R be

a bounded function which is continuous when one puts on C(U,Rm) the topology

of uniform convergence on compact sets. Then, for each compact set I ⊂ U , one

has

E
( ∑
x∈I:Z(x)=u

g(Z, x)
)

=

∫
I

E
(
g(Z, x) | det(DZ(x))|

∣∣Z(x) = u
)
pZ(x)(u) dx.

(4.2.3)
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For the proof of Theorem 7, Theorem 8 and Theorem 9 see Azäıs & Wschebor

[2009].

More generally, let U ⊂ Rm be an open set, and let f : U → Rk be a smooth

function, where m > k. If u ∈ Rk is a regular value of f , then, f−1(u) is a

smooth manifold of dimension m−k. Let us denote by λm−k the m−k geometric

measure.

Theorem 10 (Rice Formula for the Expectation of the Geometric Measure). Let

Z : U → Rk be a random field, U ⊂ Rm be an open set, and let u ∈ Rk, (m ≥ k).

Assume that

1. Z is Gaussian;

2. Almost surely the trajectories x 7→ Z(x) are C1;

3. For each x ∈ U , Z(x) has non-degenerate distribution, that is Var(Z(x)) is

positive definite;

4. The event {∃x ∈ U : Z(x) = u, rank(DZ(x)) < k} has probability zero.

Then, one has

E(λm−k(f
−1(u)∩U)) =

∫
U

E
(
| det[(DZ(x)) · (DZ(x))T ]|1/2

∣∣Z(x) = u
)
pZ(x)(u) dx,

(4.2.4)

where ·T means the transpose.

Remark:

• If instead of an open subset U ⊂ Rm, the set U where we count the number

of solutions Z(x) = u is an open subset of a differential manifold, the same

formulas hold replacing the Lebesgue measure by the geometric measure of

the manifold and the derivative of the random field by the derivative along

the manifold.

• In general, condition 4. of Theorem 7 may be difficult to prove. However in

the case of random polynomial systems it holds. Note that this condition

is a “Sard” type condition.
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• Theorem 9 is a particular case of Theorem 6.4 of Azäıs & Wschebor [2009].

In this thesis we will restrict ourselves to the particular case of random fields,

namely, polynomial random fields. This is our next tasks.

4.3 Polynomial Random Fields

Following the notation in Section 4.1, when we randomize the coefficients {a(i)
j }

in some probability space (Ω,A, P ), the polynomial system f becomes a random

field. Let us denote by Z : Ω× Rm → Rm that random field, that is

Zi(ω, x) =
∑
‖j‖≤di

a
(i)
j (ω)xj, (i = 1, . . . ,m). (4.3.1)

Here the situation is much simpler as compared with the general theory of

stochastic processes. The main reason for that is that the set of functions

{Z(ω, ·) : Rm → Rm, ω ∈ Ω},

lives in a finite dimensional subspace of the infinite dimensional space F(Rm,Rm)

of functions from Rm to Rm. Let us be more precise.

For (d) = (d1, . . . , dn), let P(d) = Pd1 × · · · ×Pdm be the space of m poly-

nomial equations in m real variables, where Pd stands for the vector space of

degree d polynomials in m real variables. Note that P(d) ⊂ F(Rm,Rm) and can

be identified with the finite dimensional vector space Rdim(P(d)). In the next lines

we will write P(d) but we may think on this identification.

Fixing ω ∈ Ω, we get that Z(ω, ·) ∈P(d). Then, we have the natural map

ξ : Ω→P(d), ξ(ω) = Z(ω, ·) = (a
(i)
j (ω)) ‖j‖≤di

i=1,...,m

. (4.3.2)

Therefore ξ is a random vector on P(d), that is, a measurable function from

(Ω,A) to (P(d),B), where B is the Borel σ-algebra of P(d). Then, ξ induces a

probability measure on (P(d),B, ν), namely, the push forward measure

ν(B) = P (ξ−1(B)) = P ({ω ∈ Ω : (a
(i)
j (ω)) ‖j‖≤di

i=1,...,m

∈ B}),
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for all B ∈ B.

Canonical Process

In this way we can define a new random field defined on the probability space

(P(d),B, ν), as

Z : P(d) × Rm → Rm, Z(f, x) = f(x).

This random field is known as the canonical process (see Appendix B). (Note that

Z is just the evaluation map.)

In this case the associated map ξ given in (4.3.2), is the identity map, that is

Z(f, ·) = f . Then this new random field induces the same probability measure

on the space P(d) as the random field (4.3.1), and therefore they can be seen as

the same process.

These observations lead us to give a geometric structure to the probability

space (Ω,A, P ), just defining Ω = P(d), A = B, and P = ν. This is the main

purpose of next section, trying to relate Rice formulas with known formulas in

geometric integrations, as the co-area formula.

However, we alert the reader that this is not necessary to study a stochastic

processes. One can just work with the probability space (Ω,A, P ) with no more

structure than the given one.

Remark 4.3.1. Let Z : Ω × Rm → Rm be a random field. In the general the-

ory of stochastic processes the trajectories Z(ω, ·) lies, in general, in the infinite

dimensional space F(Rm,Rm). Then, the main problem is how to introduce in

F(Rm,Rm) a σ-algebra and a measure such that the map ξ : Ω → F(Rm,Rm),

given by ξ(ω) = Z(ω, ·), is a measurable function, and the measure on F(Rm,Rm)

is just the push forward measure by ξ. This is a non trivial issue, and under mild

conditions on the random field, this construction is possible. This construction

was made by Kolmogorov and it is known as Kolmogorov extension Theorem (see

[Azäıs & Wschebor, 2009, Theorem 1.1, page 12]) .
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4.3.1 Rice Formula Heuristic

In this section we show the relation of Rice Formula and other technics used in

integral geometry.

Let Ω = P(d), with the Borel σ-algebra and let ν be any probability measure

on P(d). Let Z be the random field Z : P(d)×Rm → Rm given by the evaluation

map, that is Z(f, x) = f(x).

Note that, for a fixed x ∈ Rm, Z(·, x) : P(d) → Rm is the function f 7→ f(x).

Moreover, for a fixed f ∈P(d), we have Z(f, ·) = f(·).
Moreover, in this case, the random variable NZ(U) is given by

NZ(U) :P(d) → N ∪ {+∞},

f 7→ #Uf
−1(0)

that is, the number of solutions of f(x) = 0, lying in the subset U ⊂ Rm.

Therefore, we can write

E(NZ(U)) =

∫
f∈P(d)

#Uf
−1(0) dν.

Assume that the random field Z satisfy the condition of Rice formula in

Theorem 7.

Then applying Rice Formula (4.2.1) we get

E(NZ(U)) =

∫
U

E
(
| det(DZ(x)|

∣∣Z(x) = 0
)
pZ(x)(0) dx.

For a fixed x ∈ Rm, the event {Z(x) = 0} is the subset of P(d) given by

{f ∈P(d) : Z(f, x) = 0}, that is {Z(x) = 0} is the vector subspace of P(d) given

by

Vx = {f ∈P(d) : f(x) = 0}.

Note that | det(DZ(x))| at f ∈ P(d) is | det(Df(x))|. Therefore, the condi-

tional expectation E
(
| det(DZ(x))|

∣∣Z(x) = 0
)

is the integral in the fiber Vx of

the function | det(Df(x))| with respect to the conditional probability measure νx.

Note that νx(Vx) = 1.
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The density pZ(x)(y), for some y ∈ Rm, is associated to the measure of the

fiber. More precisely, let Bε(y) ⊂ Rm be the Euclidean ball of center y and radius

ε > 0, then ∫
Bε(y)

pZ(x)(z) dz = ν({f ∈P(d) : f(x) ∈ Bε(y)}).

Therefore, since Z(x) is a non-degenerate Gaussian random vector, we get

pZ(x)(y) = lim
ε↓0

ν({f ∈P(d) : f(x) ∈ Bε(y)})
λm(Bε(y))

.

Then, we can rewrite Rice formula as∫
f∈P(d)

#Uf
−1(0) dν =

∫
x∈U

(∫
f∈Vx
| det(Df(x)| dVx

)
dx, (4.3.3)

where dVx is the (non-normalized) measure pZ(x)(0) · dνx.
Formula (4.3.3) is the type of formula used by Shub and Smale to study the

number of solutions of random system of equations. They arrive to this type

of formula by a double fibration of the co-area formula (see [Blum et al., 1998,

Theorem 5, page 243]).

Remark 4.3.2. All the preceding observations applies mutatis mutandis to the

space H(d) of homogeneous polynomial systems.

Remark 4.3.3. Note that, when the measure νdi is a Gaussian measure on Pdi ,

then, the covariance Γi : Rm × Rm → R of the stochastic process Zi, is given by

Γi(x, y) = E(Zi(x)Zi(y)) =

∫
ω∈Ω

Zi(ω, x)Zi(ω, y) dP (w) =

∫
g∈Pdi

g(x)g(y) dνdi .

That is,

Γi(x, y) = 〈Kx, Ky〉L2 ,

is the L2(Pdi ,B, νdi) inner product of the evaluation map functionsKz : Pdi → R
given by Kz(g) = g(z), for all z ∈ Rm.

In the particular case that νdi is the measure defined by the Weyl inner prod-

uct: for j = (j1, . . . , jm) ∈ Nm, ‖j‖ = di the monomial xj = xj11 · · · xjmm , the Weyl
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inner product makes 〈xj, xj′〉 = 0, for j 6= j′ and

〈xj, xj〉 =

(
di
j

)−1

,

is not difficult to see that 〈Kx, Ky〉L2 = (1 + 〈x, y〉)di , and therefore Γi(x, y) =

(1 + 〈x, y〉)di .
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4.4 Shub-Smale Distribution

4.4 Shub-Smale Distribution

Let us consider a system of m polynomial equations in m unknowns over R,

fi(x) :=
∑
‖j‖≤di

a
(i)
j x

j, (i = 1, . . . ,m). (4.4.1)

We say that this system of equation has the Shub-Smale distribution when the

coefficients are Gaussian centered independent random variables having variances

E
[
(a

(i)
j )2

]
=

di!

j1! · · · jm! (di − ‖j‖)!
. (4.4.2)

Theorem 11 (Shub-Smale). Let f be the system of equations (4.4.1) with the

Shub-Smale distribution. Then

E(N f ) =
√
d1 · · · dm.

Proof. Let us homogenize the system of polynomials, that is, let F : Rm+1 → Rm,

where

Fi(x0, . . . , xm) :=
∑
‖j‖=di

a
(i)
j x

j0
0 x

j1
1 · · ·xjmm , (i = 1, . . . ,m).

Note that

N f =
1

2
NF (Sm). (4.4.3)

Claim I: The random polynomials Fi are independent, Gaussian, centered,

with covariance function Γi(x, y) = 〈x, y〉d:
This claims follows immediately from the definition of the Shub-Smale distribu-

tion.

Claim II: The derivative of F along Sm at x ∈ Sm, DF (x)|x⊥ , is independent

of F (x):

Since E(Fi(x)2) = 1 for all x ∈ Sm, the claims follows differentiating under

expectation sign.

Claim III: The law of the random field F is invariant under the action of the

orthogonal group of Rm+1:

This follows from Claim I, since the covariance of the process is invariant under

this group.
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By Rice Formula we get

E(NF (Sm)) =

∫
Sm

E(| detDF (x)|x⊥ |
∣∣F (x) = 0)pF (x)(0) dSm(x),

where dSm is the geometric measure of Sm. Note that F (x) is a standard Gaussian

random vector in Rm, therefore pF (x)(0) = (2π)−m/2. Then

E(NF (Sm)) =
1

(2π)m/2

∫
Sm

E(| detDF (x)|x⊥|
∣∣F (x) = 0) dSm(x)

=
1

(2π)m/2

∫
Sm

E(| detDF (x)|x⊥|) dSm(x)

=
1

(2π)m/2
vol(Sm)E(| detDF (e0)|e⊥0 |),

where the successive equalities follows from Claim II and Claim III.

Differentiating Γi under the expectation sign, we obtain

∂

∂x`

∂

∂x`′
Γi(x, y)

∣∣
x=y=e0

= E(
∂Fi
∂x`

(e0)
∂Fi
∂x`′

(e0)) = diδ` `′ . (4.4.4)

Therefore,

DF (e0)|e⊥0 = ∆(
√
di) ·G,

where ∆(di) is the diagonal matrix whose ith entry is di and G is an m × m

standard Gaussian matrix, that is, a m×m matrix with i.i.d standard Gaussian

entries.

Hence

E(NF (Sm)) =
1

(2π)m/2
vol(Sm)

√
d1 · · · dmE(| detG|). (4.4.5)

Thereby, we reduce the problem of finding the expected value of the number

of roots of a random system to a problem of random matrices, namely, compute

E(| detG|) for a standard Gaussian matrix.

The computation of E(| detG|) is quite standard and should be interpreted as

the expected value of the volume of a random parallelepiped. For a proof see the

book by Azäıs & Wschebor [2009].

146



4.5 Non-centered Systems

One has

E(| detG|) =
1√
2π

2(m+1)/2Γ((m+ 1)/2). (4.4.6)

The proof follows from (4.4.3), (4.4.5) and (4.4.6).

Remark 4.4.1. The given proof of Theorem 11 is due to Jean-Marc Azäıs and

Mario Wschebor and is included in Azäıs & Wschebor [2009]. This proof shows

the power of Rice formula to study this kind of problems. In many situations

we have similar conditions and we can proceed as in the proof of Theorem 11.

Roughly, the conditions are: invariance of the law under certain group of motions,

and the independence of the condition in the conditional expectation. In these

cases the problem always reduce to a problem of random matrices. See for ex-

ample Theorem 16, Theorem 15 or Theorem 18. Moreover, if instead of counting

roots we consider the problem of computing weighted roots, where the function

we ponderate on the roots is a function of the derivative of the process, then we

can proceed as we mention before, reducing our problem to a problem of random

matrices. That is the case, for example, when we ponderate the condition number

at each root.

4.5 Non-centered Systems

The aim of this section is to remove the hypothesis that the coefficients have zero

expectation.

One way to look at this problem is to start with a non-random system of

equations (the “signal”)

Pi(x) = 0, (i = 1, . . . ,m), (4.5.1)

perturb it with a polynomial noise Xi(x) (i = 1, . . . ,m), that is, consider

Pi(x) +Xi(x) = 0, (i = 1, . . . ,m),

and ask what one can say about the number of roots of the new system, or, how

much the noise modifies the number of roots of the deterministic part. (For short,

we denote N f = N f (Rm)).
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Roughly speaking, we prove in Theorem 12 that if the relation signal over

noise is neither too big nor too small, in a sense that will be made precise later

on this chapter, there exist positive constants C, θ, where 0 < θ < 1, such that

E(NP+X) ≤ C θmE(NX). (4.5.2)

Inequality (4.5.2) becomes of interest if the starting non-random system (4.5.1)

has a large number of roots, possibly infinite, and m is large. In this situation,

the effect of adding polynomial noise is a reduction at a geometric rate of the

expected number of roots, as compared to the centered case in which all the Pi’s

are identically zero.

For simplicity we assume that the polynomial noise X has the Shub-Smale

distribution (4.4.2). However, one should keep in mind that the result can be ex-

tended to other orthogonally invariant distributions (cf. Armentano & Wschebor

[2009]).

Before the statement of Theorem 12 below, we need to introduce some addi-

tional notations.

In this simplified situation, one only needs hypotheses concerning the relation

between the signal P and the Shub-Smale noise X, which roughly speaking should

neither be too small nor too big.

Since X has the Shub-Smale distribution, from (4.4.2) we get

Var(Xi(x)) = (1 + ‖x‖2)di , ∀x ∈ Rm, (i = 1, . . . ,m),

(see Remark 4.3.3).

Define

H(Pi) := sup
x∈Rm

{
(1 + ‖x‖) ·

∥∥∥∥∇( Pi
(1 + ‖x‖2)di/2

)
(x)

∥∥∥∥} ,
K(Pi) := sup

x∈Rm\{0}

{
(1 + ‖x‖2) ·

∣∣∣∣ ∂∂ρ
(

Pi
(1 + ‖x‖2)di/2

)
(x)

∣∣∣∣} ,
for i = 1, . . . ,m, where ‖ · ‖ is the Euclidean norm, and ∂

∂ρ
denotes the derivative

in the direction defined by x
‖x‖ , at each point x 6= 0.
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For r > 0, put:

L(Pi, r) := inf
‖x‖≥r

Pi(x)2

(1 + ‖x‖2)di
(i = 1, . . . ,m).

One can check by means of elementary computations that for each P as above,

one has

H(P ) <∞, K(P ) <∞.

With these notations, we introduce the following hypotheses on the systems as

m grows:

H1)

Am =
1

m
·
m∑
i=1

H2(Pi)

i
= o(1) as m→ +∞ (4.5.3a)

Bm =
1

m
·
m∑
i=1

K2(Pi)

i
= o(1) as m→ +∞. (4.5.3b)

H2) There exist positive constants r0, ` such that if r ≥ r0:

L(Pi, r) ≥ ` for all i = 1, . . . ,m.

Theorem 12. Under the hypotheses H1) and H2), one has

E(NP+X) ≤ C θmE(NX), (4.5.4)

where C, θ are positive constants, 0 < θ < 1.

Remarks on the statement of Theorem 12

• It is obvious that our problem does not depend on the order in which the

equations

Pi(x) +Xi(x) = 0 (i = 1, . . . ,m)

appear. However, conditions (4.5.3a) and (4.5.3b) in hypothesis H3) do

depend on the order. One can state them by saying that there exists an
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order i = 1, . . . ,m on the equations, such that (4.5.3a) and (4.5.3b) hold

true.

• Condition H1) can be interpreted as a bound on the quotient signal over

noise. In fact, it concerns the gradient of this quotient. In (4.5.3b) the

radial derivative appears, which happens to decrease faster as ‖x‖ → ∞
than the other components of the gradient.

Clearly, ifH(Pi), K(Pi) are bounded by fixed constants, (4.5.3a) and (4.5.3b)

are verified. Also, some of them may grow as m → +∞ provided (4.5.3a)

and (4.5.3b) remain satisfied.

• Hypothesis H2) goes – in some sense – in the opposite direction: For large

values of ‖x‖ we need a lower bound of the relation signal over noise.

• A result of the type of Theorem 12 can not be obtained without putting

some restrictions on the relation signal over noise. In fact, consider the

system

Pi(x) + σXi(x) = 0 (i = 1, . . . ,m), (4.5.5)

where σ is a positive real parameter. If we let σ → +∞, the relation signal

over noise tends to zero and the expected number of roots will tend to

E(NX). On the other hand, if σ ↓ 0, E(NX) can have different behaviours.

For example, if P is a “regular” system, the expected value of the number

of roots of (4.5.5) tends to the number of roots of Pi(x) = 0, (i = 1, . . . ,m),

which may be much bigger than E(NX). In this case, the relation signal

over noise tends to infinity.

• As it was mentioned before we can extend Theorem 12 to other orthogonally

invariant distributions. However, for the general version we need to add

more hypotheses.

In the next paragraphs we are going to give two simple examples.

For the proof of Theorem 12 and more examples with different noises see

Armentano & Wschebor [2009].
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4.5.1 Some Examples

We assume that the degrees di are uniformly bounded as m growth.

For the first example, let

Pi(x) = ‖x‖di − rdi ,

where di is even and r is positive and remains bounded as m varies. Then, one

has:

∂

∂ρ

(
Pi

(1 + ‖x‖2)di/2

)
(x) =

di ‖x‖di−1 + di r
di ‖x‖

(1 + ‖x‖2)
di
2

+1
≤ di(1 + rdi)

(1 + ‖x‖2)3/2

∇
(

Pi
(1 + ‖x‖2)di/2

)
(x) =

di ‖x‖di−2 + di r
di

(1 + ‖x‖2)
di
2

+1
x

which implies ∥∥∥∥∇( Pi
(1 + ‖x‖2)di/2

)
(x)

∥∥∥∥ ≤ di(1 + rdi)

(1 + ‖x‖2)3/2
.

Again, since the degrees d1, . . . , dm are bounded by a constant that does not de-

pend on m, H1) follows. H2) also holds under the same hypothesis.

Notice that an interest in this choice of the Pi’s lies in the fact that obviously

the system Pi(x) = 0 (i = 1, . . . ,m) has an infinite number of roots (all points

in the sphere of radius r centered at the origin are solutions), but the expected

number of roots of the perturbed system is geometrically smaller than the Shub–

Smale expectation, when m is large.

Our second example is the following: Let T be a polynomial of degree d in

one variable that has d distinct real roots. Define:

Pi(x1, . . . , xm) = T (xi) (i = 1, . . . ,m).

One can easily check that the system verifies our hypotheses, so that there exist

151



4. REAL RANDOM SYSTEMS OF POLYNOMIALS

C, θ positive constants, 0 < θ < 1 such that

E(NP+X) ≤ C θmdm/2,

where we have used the Shub–Smale formula when the degrees are all the same.

On the other hand, it is clear that NP = dm so that the diminishing effect of the

noise on the number of roots can be observed. A number of variations of these

examples for P can be constructed, but we will not pursue the subject here.

4.6 Bernstein Polynomial Systems

Up to now all probability measures were introduced in a particular basis, namely,

the monomial basis {xj}‖j‖≤d. However, in many situations, polynomial systems

are expressed in different basis, such as, orthogonal polynomials, harmonic poly-

nomials, Bernstein polynomials, etc. So, it is a natural question to ask: What can

be said about N f (V ) when the randomization is performed in a different basis?

For the case of random orthogonal polynomials see Bharucha-Reid & Sam-

bandham [1986], and Edelman & Kostlan [1995] for random harmonic polynomi-

als.

In this section following Armentano & Dedieu [2009] we give an answer to the

average number of real roots of a random system of equations expresed in the

Bernstein basis. Let us be more precise:

The Bernstein basis is given by:

bd,k(x) =

(
d

k

)
xk(1− x)d−k, 0 ≤ k ≤ d,

in the case of univariate polynomials, and

bd,j(x1, . . . , xm) =

(
d

j

)
xj11 . . . x

jm
m (1− x1 − . . .− xm)d−‖j‖, ‖j‖ ≤ d,

for polynomials in m variables, where j = (j1, . . . , jm) is a multi-integer, and
(
d
j

)
is the multinomial coefficient.
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Let us consider the set of real polynomial systems in m variables,

fi(x1, . . . , xm) =
∑
‖j‖≤di

a
(i)
j bd,j(x1, . . . , xm), (i = 1, . . . ,m).

Take the coefficients a
(i)
j to be independent Gaussian standard random variables.

Define

τ : Rm → P
(
Rm+1

)
by

τ(x1, . . . , xm) = [x1, . . . , xm, 1− x1 − . . .− xm].

Here P (Rm+1) is the projective space associated with Rm+1, [y] is the class of

the vector y ∈ Rm+1, y 6= 0, for the equivalence relation defining this projective

space. The (unique) orthogonally invariant probability measure in P (Rm+1) is

denoted by λm.

With the above notation the following theorem holds:

Theorem 13. 1. For any Borel set V in Rm we have

E
(
N f (V )

)
= λm(τ(V ))

√
d1 . . . dm.

In particular

2. E
(
N f
)

=
√
d1 . . . dm,

3. E
(
N f (∆m)

)
=
√
d1 . . . dm/2

m, where

∆m = {x ∈ Rm : xi ≥ 0 and x1 + . . .+ xm ≤ 1} ,

4. When m = 1, for any interval I = [α, β] ⊂ R, one has

E
(
N f (I)

)
=

√
d

π
(arctan(2β − 1)− arctan(2α− 1)) .

The fourth assertion in Theorem 13 is deduced from the first assertion but it

also can be derived from Crofton’s formula (see for example Edelman & Kostlan

[1995]).
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Let us denote by H(d) the space of real homogeneous polynomial systems in

m+ 1 variables, F = (F1, . . . , Fm), where

Fi(x1, . . . , xm, xm+1) =
∑
|j|≤di

a
(i)
j x

j1
1 . . . x

jm
m x

di−|j|
m+1 .

(d) = (d1, . . . , dm) denotes the vector of degrees, di ≥ 1, and degFi = di for every

i.

Assume that the coefficients a
(i)
j are independent centered Gaussian variables

with variance
(
di
j

)
. The real roots of such a system consist in lines through the

origin in Rm+1 which are identified to points in P (Rm+1).

Theorem 14. For any measurable set B ⊂ P (Rm+1) we have

E
(
NF (B)

)
= λm(B)

√
d1 . . . dm.

Proof of Theorem 14. For any measurable set B ⊂ P (Rm+1) let us define

µn(B) = E
(
NF (B)

)
.

We see that µm is an orthogonally invariant measure in P (Rm+1). Thus it is

equal to λm up to a multiplicative factor. From Theorem 11, this factor is equal

to
√
d1 . . . dm. Therefore

E
(
NF (B)

)
= λm(B)

√
d1 . . . dm.

Proof of Theorem 13. Let us prove the first item. For any measurable setB ⊂ Rm

we have by Theorem 14

λm(τ(B))
√
d1 . . . dm = E

(
NF (τ(B))

)
=

∫
H(d)

NF (τ(B))dF.

The map h which associates to f ∈ P(d) the homogeneous system F ∈ H(d)

obtained in substituting xm+1 to the affine form (1−x1− . . .−xm) is an isometry
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between these two spaces so that∫
H(d)

NF (τ(B)) dF =

∫
P(d)

Nh(f)(τ(B))df.

Since Nh(f)(τ(B)) = N f (B) this last integral is equal to
∫

P(d)
N f (B) df .

To complete the proof of this theorem we notice that λm(τ(Rm)) = 1, λm(τ(Sm)) =

1/2n, and,

λ1(τ([α, β])) =
1

π

∫ β

α

1

t2 + (1− t)2
dt =

arctan(2β − 1)− arctan(2α− 1)

π
,

which follows from the computation of the length of the path {τ(t)}t∈[α,β] ⊂
P(R).

4.6.1 Some Extensions: Random Equations with a Simple

Answer

In this section we extend last result on Bernstein polynomial systems. We give

a general formula to compute the expected number of roots of some random

systems of equations.

Let U ⊂ Rm be an open subset, and let ϕ0, . . . , ϕm : U → R be (m + 1)

differentiable functions. Assume that, for every x ∈ U , the values ϕi(x) do not

vanish at the same time. Then we can define the map Λ : U → P(Rm+1) by

Λ(x) = [ϕ0(x), . . . , ϕm(x)].

Let f be the system of m-equations in m real variables

fi(x1, . . . , xm) :=
∑
‖j‖=di

a
(i)
j ϕ0(x)j0 · · ·ϕm(x)jm , (i = 1, . . . ,m), (4.6.1)

where x = (x1, . . . , xm) ∈ U .

We denote by N f (U) the number of roots of the system of equations fi(x) =

0, (i = 1, . . . ,m) lying in U . Then,
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Theorem 15. Let f be the system of equations (4.6.1), where the {a(i)
j } are

independent Gaussian centered random variables with variance
(
di
j

)
. Then,

E
[
N f (U)

]
=

√
d1 · · · dm

vol(P(Rm+1))

∫
z∈P(Rm+1)

# Λ−1({z}) dz.

where # ∅ = 0.

Proof. Let us denote by F : Rm+1 → Rm the random field given by

Fi(z0, . . . , zm) =
∑
‖j‖=di

a
(i)
j z

j0
0 · · · zjmm ,

where a
(i)
j are the random variables of the hypotheses.

Claim: The random variables∑
z∈P(Rm+1):F (z)=0

#Λ−1(z) and #f−1(0)

coincides almost every where ω ∈ Ω:

Let Vc ⊂ P(Rm+1) be the set of critical values of Λ : U → P(Rm+1). By Sard’s

lemma, Vc has measure zero in P(Rm+1). Then outside the event

{ω ∈ Ω : F−1(0) ∩ Vc 6= ∅},

we have that
∑

z∈P(Rm+1):F (z)=0 #Λ−1(z) is finite and equal to #f−1(0). Therefore,

it is enough to prove that the probability of the event {ω ∈ Ω : F−1(0)∩ Vc 6= ∅}
is zero. Taking the push-forward measure on H(d), the space of homogeneous

polynomial systems where F lives, it is enough to prove that the measure of the

set A = {h ∈ H(d) : h−1(0)∩Vc 6= ∅} is zero. By the reproducing kernel property

of (real) Weyl inner product (see (3.1.4) for the complex analogue), we have that

the set of problematic systems is given by

A =
⋃
z∈Vc

K⊥z ,

where Kz ∈ H(d) is the system of polynomials Kz(x) = (〈x, z〉di)i, (i = 1, . . . ,m),

and K⊥z = {h ∈ H(d) : 〈hi, (Kz)i〉W = 0}. Note that K⊥z is codimension m
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subspace of H(d), and the hausdorff dimension of {Kz : z ∈ Vc} is less than m.

Therefore A ⊂ H(d) is union of codimension m subspaces parameterized on a set

with Haudsorff dimension less than m. Since the map z 7→ Kz is differentiable,

then we can conclude that A has measure zero on H(d) proving the claim.

Then, using Rice formula for weighted roots (4.2.3), and Claim II and Claim

III of the proof of Theorem 11 we get

E
( ∑
z∈P(Rm+1):F (z)=0

#Λ−1(z)
)

=
1

2
E
( ∑
z∈Sm:F (z)=0

#Λ−1([z])
)

=
1

2

∫
z∈Sm

E
(
#Λ−1([z]) | det(DF (z)|z⊥)|

∣∣F (z) = 0
)
pF (z)(0) dz

=
1

2

∫
z∈Sm

#Λ−1([z])E
(
| det(DF (z)|z⊥)|

∣∣F (z) = 0
)
pF (z)(0) dz

=
1

2
E (| det(DF (e0)|e0⊥)|) pF (e0)(0)

∫
z∈Sm

#Λ−1([z]) dz

=
1

2

E(NF (Sm))

vol(Sm)

∫
z∈Sm

#Λ−1(z) dz =

√
d1 · · · dm

vol(P(Rm+1))

∫
z∈P(Rm+1)

# Λ−1({z}) dz.

Therefore, the proof follows from Theorem 11 and the Claim.

Some Examples

Bernstein Polynomials:

Let us consider the set of real polynomial systems in m variables,

fi(x1, . . . , xm) =
∑
‖j‖≤di

a
(i)
j x

jm
m (1− x1 − . . .− xm)d−‖j‖ (i = 1, . . . ,m).

Take the coefficients a
(i)
j to be independent, Gaussian random variables with

variance
(
di
j

)
.

Then, Theorem 13 follows from Theorem 15 taking, for x ∈ Rm, ϕi(x) = xi

for i = 1 . . . ,m and ϕ0(x) = 1− x1 − . . .− xm.

Non-Polynomial Examples
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• Consider the random polynomial

f(t) =
d∑
j=0

aj cos(t)d−j sin(t)j,

where aj are independent, centered, Gaussian random variables with vari-

ance
(
d
j

)
, (j = 0, . . . , d).

Then, considering ϕ0(t) = cos(t) and ϕ1(t) = sin(t), t ∈ [0, π], we get from

Theorem 15 that

E(N f ([0, π])) =
√
d.

• Consider the random polynomial

f(t) =
d∑
j=0

ajt
d−jejt,

where {aj} are independent, centered, Gaussian random variables with vari-

ance
(
d
j

)
.

Then, taking ϕ0(t) = t, ϕ1(t) = et, for t ∈ R, we conclude from Theorem

15 that

E(N f (R)) =
√
d(1− Arctan(e)/π).

4.7 Random Real Algebraic Varietes

Let us assume now that we have less equations than variables, that is, let f :

Rn → Rk be a random system of polynomials such that k < n. In this case

Z(f1, . . . , fk) = f−1(0) is a random algebraic variety of positive dimension. A

natural questions come into account:

What is the average volume of Z ?

In the next lines we attack this problem by means of the Rice Formulas.

In Bürgisser [2006] and Bürgisser [2007] one can find a nice study of this an
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4.7 Random Real Algebraic Varietes

other important questions concerning geometric properties of random algebraic

varieties.

We will restrict ourselves to the particular case of the Shub-Smale distribution.

Let us consider the random system of k homogeneous polynomial equations

in m+ 1 unknowns f : Rm+1 → Rk, given by

fi(x) :=
∑
‖j‖=di

a
(i)
j x

j, (i = 1, . . . , k). (4.7.1)

Assume that this system has the Shub-Smale distribution, that is, {a(i)
j } are

Gaussian, centered, independent random variables having variances

E
[
(a

(i)
j )2

]
=

(
di
j

)
=

di!

j0! · · · jm!
.

Since f is homogeneous, we can restrict to the sphere Sm ⊂ Rm+1 our study

of the random set Z(f1, . . . , fk). Note that, generically, Z(f1, . . . , fk) ∩ Sm is a

smooth manifold of dimension m−k. Let us denote by λm−k the m−k geometric

measure.

Theorem 16. Let f : Rm+1 → Rk be the system (4.7.1) with the Shub-Smale

distribution. Then, one has

E(λm−k(Z(f1, . . . , fk) ∩ Sm)) =
√
d1 · · · dk vol(Sm−k+1).

This result was first observed by Kostlan [1993] in the particular case d1 =

. . . = dk. We give a proof of this proposition based on the Rice formula for the

geometric measure. We will see that the proof is almost the same as the proof of

Shub-Smale Theorem 11. (See Remark 4.4.1). The difference lies in the fact that

we should compute the expected value of the determinant of a different random

matrix. At the end of this section we will see how one can obtain another proof

of this theorem from Theorem 11 and the fairly known Crofton-Poincare formula

of integral geometry.

Proof of Theorem 16. Using the Rice formula for the geometric measure (4.2.4)
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4. REAL RANDOM SYSTEMS OF POLYNOMIALS

we get:

E(λm−k(Z(f1, . . . , fk) ∩ Sm)) =

=

∫
Sm

E
(
| det[(Df(x)|x⊥ · (Df(x)|x⊥)T |1/2]

∣∣ f(x) = 0
)
pf(x)(0) dSm(x).

From Claim I of the proof of Theorem 11 we get that the law of the process

in invariant under the action of the orthogonal group in Rm+1. From Claim II

of the proof of the same theorem we get that the law of the derivative Df(x)|x⊥
(restricted to orthogonal complement of x ∈ Sm) is independent of the law of the

condition f(x). Then, we have

E(λm−k(Z(f1, . . . , fk) ∩ Sm)) =

= vol(Sm)E(| det[(Df(e0)|e⊥0 ) · (Df(e0)|e⊥0 )T ]|1/2)pf(e0)(0).

Moreover, since the random vector f(e0) ∈ Rk has standard normal distribution,

we get

E(λm−k(Z(f1, . . . , fk) ∩ Sm)) =

=
vol(Sm)
√

2π
k

E(| det[(Df(e0)|e⊥0 ) · (Df(e0)|e⊥0 )T ]|1/2).

Hence, we reduce the computations to a problem in random matrices. From

(4.4.4) we obtain that

E(| det[(Df(e0)|e⊥0 ) · (Df(e0)|e⊥0 )T ]|1/2) =
√
d1 · · · dk E(det(Gk×m ·Gk×m

T )1/2),

where Gk×m is the k × m random matrix whose coefficients are i.i.d standard

Gaussian random variables.

By standard conditioning arguments one can prove that

E(det(Gk×m ·Gk×m
T )1/2) =

m∏
i=m−k+1

E(‖ξj‖),

where ‖ξj‖ is the Euclidean norm of a standard Gaussian random vector in Rj.
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4.7 Random Real Algebraic Varietes

It is easy to see that E(‖ξj‖) =
√

2Γ
(
(i+ 1)/2

)
/Γ
(
i/2
)
. Then, we conclude

E(λm−k(Z(f1, . . . , fk) ∩ Sm)) =
√
d1 · · · dk

vol(Sm)

(2π)k/2
2k/2

Γ
(
m+1

2

)
Γ
(
m−k+1

2

)
=
√
d1 · · · dkvol(Sm−k+1),

proving the result.

Recall the Crofton-Poincare Formula:

Theorem 17 (Crofton-Poincare Formula). Let Z and P be compact smooth sub-

manifolds of Sm of dimension q and p, such that q + p ≥ m. Then∫
g∈O(n+1)

λp+q−m(Z ∩ gP ) dg =
vol(Sq+p−m)

vol(Sq) vol(Sp)
λq(Z)λp(P ),

where O(n+ 1) is the orthogonal group in Rm+1.

This is a classical formula in integral geometry. For references see for example

Howard [1993].

Alternative Proof of Theorem 16. Let {e0, . . . , em} be the canonical basis of Rm+1,

and denote by Sk the k-dimensional sphere on Sm given by intersecting Sm with

the orthogonal complementary subspace spanned by {ek, . . . , em}.
Taking Z = Z(f1, . . . , fk) ∩ Sm, P = Sk, q = m − k, p = k we get that for

almost every ω ∈ Ω,∫
g∈O(n+1)

#(Z(f1, . . . , fk) ∩ gSk) dg = 2
λm−k(Z(f1, . . . , fk) ∩ gSm)

vol(Sm−k)
. (4.7.2)

Let us compute E(#(Z(f1, . . . , fk) ∩ gSk)) for g ∈ O(n+ 1).

Since the law of f1, . . . , fk is invariant under the action of the orthogonal

group, we have that E(#(Z(f1, . . . , fk)∩gSk)) = E(#((f ◦g−1)−1(0)∩gSk)), and

therefore we conclude that

E(#(Z(f1, . . . , fk) ∩ gSk)) = E(#(Z(f1, . . . , fk) ∩ Sk)) for all g ∈ O(n+ 1).
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4. REAL RANDOM SYSTEMS OF POLYNOMIALS

Therefore, if one pick a circle at random, independently of the law of the ran-

dom field f = (f1, . . . , fk), we obtain that the expected value of the num-

ber of intersection points of Z(f1, . . . , fk) with the random circles is equal to

E(#(Z(f1, . . . , fk) ∩ Sk)).
Let us randomize the circles in a way such that we now that answer. Let us

consider the system of random equations F : Rm+1 → Rm, given by

f1(x) = 0
...

fk(x) = 0

〈x, ηk〉 = 0
...

〈x, ηm〉 = 0

where ηk, . . . , ηm are i.i.d standard gaussian vectors in Rm+1, independent of

the coefficients {a(i)
j }i=1,...,k;‖j‖=di of f . Then it is immediate to check that the

random field F has the (homogeneous) Shub-Smale distribution with degrees

d1, . . . , dk and m − k degrees equal 1. Then, from Theorem 11 we get that

E(NF (Sm)) is equal to 2 times the square root of the product of the degrees,

that is, E(NF (Sm)) = 2
√
d1 · · · dk. Hence we conclude that

E(#(Z(f1, . . . , fk) ∩ gSk)) = 2
√
d1 · · · dk, (4.7.3)

for all g ∈ O(n+ 1).

Then from (4.7.2) and (4.7.3) we get

E(λm−k(Z(f1, . . . , fk) ∩ Sm)) =
√
d1 · · · dk vol(Sm−k).
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Chapter 5

Complex Random Systems of

Polynomials

In this chapter we study complex random systems of polynomial equations. The

main objective is to introduce the technics of Rice Formulas in the realm of

complex random fields. At the end we give a probabilistic approach of Bézout’s

theorem using Rice Formulas.

5.1 Introduction and Preliminaries

Let H(d) be the space of m homogeneous polynomials of degrees (d) = (d1, . . . , dm)

in (m+ 1) complex variables. Let us denote as usual

f`(z) =
∑
‖j‖=d`

a
(`)
j z

j, ` = 1, . . . ,m, (5.1.1)

where d` is the degree of the polynomial f`, j = (j0. . . . , jm) ∈ Nm+1 is a multi-

index of nonnegative integers, z = (z0. . . . , zm) ∈ Cm+1 is a point in Cm+1, a
(`)
j =

a
(`)
j0...jm

∈ C, and ‖j‖ =
∑m

k=0 jk, z
j = zj00 . . . zjmm .

If one randomize the coefficients {a(`)
j } on the complex plane, we obtain a

complex polynomial random field. In the next lines we introduce the basic notions

of random variables in the complex plane. After that we analyze a particular

complex polynomial random field, rewriting Rice formulas for this context.
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5. COMPLEX RANDOM SYSTEMS OF POLYNOMIALS

5.1.1 Gaussian Complex Random Variables

We say that the complex random variable Z = X+ iY has distribution NC(0, σ2)

when the real part X and the imaginary part Y are i.i.d. Gaussian centered

random variables with variance σ2/2.

Thus, if Z ∼ NC(0, σ2) then the density with respect to the Lebesgue measure

on the complex plane is

pZ(z) =
1

π
e−|z|

2/σ2

, z ∈ C. (5.1.2)

It is easy to check that in this case EZ = EX + iEY = 0, and

E
[
ZZ
]

= E(|Z|2) = σ2, E [ZZ] = 0. (5.1.3)

In general, we say that Z = X + iY is a complex Gaussian random variable

if the pair (X, Y ) is Gaussian random vector on R2.

The next lemma is a useful condition to verify that that two complex Gaussian

random variables are independent.

Lemma 5.1.1. Let Z and Z ′ be two complex centered Gaussian random variables.

Then Z and Z ′ are independent if and only if{
E(ZZ ′) = 0,

E(ZZ ′) = 0

Proof. Let us write Z = X + iY and Z ′ = X ′ + iY ′. Note that{
ZZ ′ = XX ′ + Y Y ′ + i(Y X ′ −XY ′);
ZZ ′ = XX ′ − Y Y ′ + i(XY ′ + Y X ′).

If Z is independent of Z ′ then it is clear that E(ZZ ′) = E(ZZ ′) = 0. On the other

hand, if E(ZZ ′) = E(ZZ ′) = 0 then taking expected value in last expressions we

get that E(XX ′) = E(XY ′) = E(Y X ′) = E(Y Y ′) = 0 proving the independence

od Z and Z ′.
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5.1 Introduction and Preliminaries

5.1.2 Real and Hermitian Structures

The space Cm+1 is identified with R2m+2 by

(z0, . . . , zm) ∈ Cm+1 7→ ẑ = (x0, . . . , xm, y0, . . . , ym) ∈ R2m+2,

where we have denoted z` = x` + iy`, for 0 ≤ ` ≤ m.

It is easy to see that the real part of the Hermitian inner product 〈·, ·〉 in Cm+1

is the canonical inner product on R2m+2, that is,

Re〈z, w〉Cm+1 = 〈ẑ, ŵ〉R2m+2 . (5.1.4)

In what follows we will suppress the subindex and write 〈·, ·〉, and we will use the

same symbol z for represent a vector in Cm+1 and R2m+2. It should be understood

from the context.

Remark 5.1.1. Let U(Cm+1) be the unitary group of Cm+1. From (5.1.4) U(Cm+1)

acts on R2m+2 by isometries of the canonical real inner product on R2m+2. More-

over, that action is transitive on the sphere S2m+1 ⊂ R2m+2.

5.1.3 Weyl Distribution

We say that the system of polynomials f = (f1, . . . , fm) : Cm+1 → Cm given in

(5.1.1) has the Weyl distribution if the coefficients a
(`)
j are independent and a

(`)
j ∼

NC

(
0,
(
d`
j

))
. That is, the coefficients a

(`)
j are independent centered Gaussian

complex variables such that

Ea(`)
j a

(`)
j =

(
d`
j

)
, E(a

(`)
j )2 = 0. (5.1.5)

Lemma 5.1.2. Let f = (f1, . . . , fm) with the Weyl distribution, then for all

z, w ∈ Cm+1 we have

Efk(z)fk(w) = 〈z, w〉dk ,
Efk(z)fk(w) = 0,
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5. COMPLEX RANDOM SYSTEMS OF POLYNOMIALS

for k = 1, . . . ,m.

Proof. We omit the index k for notational convenience.

E
(
f(z)f(w)

)
= E

∑
‖j‖=d

ajz
j ·
∑
‖j′‖=d

aj′wj
′


=

∑
‖j‖=d

∑
‖j′‖=d

E(ajaj′)z
jwj′ .

Since the aj are independent and centered, for j 6= j′ we have E(ajaj′) =

E(aj)E(aj′) = 0. If j = j′, from (5.1.3) we have E(|aj|2) =
(
d
j

)
, hence

E
(
f(z)f(w)

)
=

∑
‖j‖=d

E(|aj|2)zjwj =
∑
‖j‖=d

(
d

j

)
zjwj

= 〈z, w〉dCm+1 .

For the second assertion of this lemma note that

Ef(z)f(w) =
∑
‖j‖=d

E(a2
j)z

jwj.

Then, the second assertion follows from (5.1.3).

Remark 5.1.2. From Lemma 5.1.2 we conclude that the random field f with the

Weyl distribution is invariant under the action of the unitary group in Cm+1,

and therefore the associated real random field is invariant under the action of a

sub group of the orthogonal group in R2m+2 that acts transitively on the sphere

S2m+1 (see Remark 5.1.1).

Density f(z)

Let z ∈ Cm+1, such that ‖z‖ = 1. By Lemma 5.1.2 the complex random variable

f1(z), . . . , fm(z) are i.i.d complex standard Gaussian. Then from (5.1.2) we obtain

pf(z)(0) =
1

πm
. (5.1.6)
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5.2 Rice Formulas for Complex Random Polynomial Fields

5.1.4 Real and Complex Derivatives of Holomorphic Maps

Let f ∈ H(d). Then f is a holomorphic map in several variables. If z ∈ Cm+1

is a zero of f , then we can restrict the complex derivative f ′(z) : Cm+1 → Cm

to f ′(z)|z⊥ : z⊥ → Cm, where z⊥ is the Hermitian complement of z in Cm+1.

Therefore, we can define the complex determinant

det(f ′(z)|z⊥),

as the determinant of the associated m×m complex matrix.

Also f is a map from R2m+2 onto R2m real differentiable. If z ∈ R2m+2 is a

root of f , then also iz is a root (i =
√
−1), and z and iz are real independent.

Therefore, f vanishes on a real subspace of dimension 2, namely the real space

associated to the complex linear subspace generated by z. In this way we can

restrict the real derivative Df(z) to z⊥ and obtain in this way a map Df(z)|z⊥ :

z⊥ → R2m. Fixed a canonical basis on those spaces, let det(Df(z)|z⊥) be its

determinant. Then

Lemma 5.1.3.

det(Df(z)|z⊥) = | det(f ′(z)|z⊥)|2.

This result is fairly known, in complex analysis, see for example Range [1986].

5.2 Rice Formulas for Complex Random Poly-

nomial Fields

Let f ∈ H(d).

Since f is homogeneous, if z ∈ Cm+1 is a root of the system f , then f(λz) = 0

for all λ ∈ C. Hence, the roots of f are complex lines in Cm+1 through the origin.

This suggest to work on the projective space P(Cm+1) or on the sphere S2m+1.

From now on, we will work on the sphere.

Note that, if z ∈ S2n+1 then λz ∈ S2n+1 for all λ such that |λ| = 1, hence the
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5. COMPLEX RANDOM SYSTEMS OF POLYNOMIALS

zeros of f in S2m+1 are, generically, a union of real circles, namely,⋃
z∈P(Cm+1): f(z)=0

{eiθz : θ ∈ [0, 2π)},

where the union is indexed in projective roots.

Generically, these are 1-dimensional real circles embedded on S2m+1, with

Riemannian length 2π.

Now, assume that the system f has the Weyl distribution (5.1.5). Since,

almost surely, the intersection of these circles have zero Lebesgue measure (see

Blum et al. [1998]), then the number of projective complex zeros of f is equal

almost surely to 1/(2π) times the geometric 1-one dimensional measure of f−1(0)∩
S2m+1.

Denoting by N the number of zeros of f and λ1 the geometric 1-dimensional

measure, we have from Rice formula for the geometric measure (4.2.4) that

2πE(N) = E(λ1(f−1(0) ∩ S2m+1))

=

∫
S2m+1

E
[
| det(Df(z) ·Df(z)T )|1/2

∣∣f(z) = 0
]
pf(z)(0)dS2m+1.

Here Df stands for the (real) derivative of f along the manifold S2m+1 and dS2m+1

for the geometric measure on S2m+1.

Then from Lemma 5.1.3 we obtain:

Proposition 5.2.1. Let f be the homogeneous system polynomials (5.1.1) with

the Weyl distribution (5.1.5). Then

E(N) =
1

2π

∫
S2m+1

E
[
| det(f ′(z)|z⊥)|2

∣∣f(z) = 0
]
pf(z)(0) dS2m+1(z). (5.2.1)

5.3 A Probabilistic Approach to Bézout’s The-

orem.

This section follows closely a joint work under construction with Federico Dalmao

and Mario Wschebor [Armentano et al., 2012]. The main objective of this work

is to give a probabilistic proof of Bézout’s theorem. More precisely:
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Theorem 18 (Bézout Probabilistic). Assume that f has the Weyl distribution

and denote by N the number of projective zeros of f , then

N = D a.s.

where D =
∏m

`=1 di is Bézout number.

The proof we have attempted was divided into two steps:

- First prove that the expected value of N is D;

- Secondly, prove that the variance of the random variable N −D is zero.

Both steps can be analyzed with Rice formulas. The first step follows similarly

to the proof of Theorem 11. For the second step we use a version of the Rice

formula for the k-moment given in (4.2.2).

The second step involves many computations. Even though we could not finish

the proof of the second step, we will show how to proceed in the computations

and we will show the main difficulties. On the particular case of m = 1, that is,

the Fundamental Theorem of Algebra, we finish the proof.

5.3.1 Expected Number of Projective Zeros

Proposition 5.3.1. Assume that f has the Weyl distribution and denote by N

the number of projective zeros of f , then

E(N) = D.

Proof. Denoting byN the number of zeros of f and λ1 the geometric 1-dimensional

measure, we have from (5.2.1) that

E(N) =
1

2π

∫
S2m+1

E
[
| det(f ′(z)|z⊥)|2

∣∣f(z) = 0
]
pf(z)(0) dS2m+1(z).

Note that from Lemma 5.1.2, E(fk(z)fk(w)) = 〈z, w〉dk . Therefore E(|fk(z)|2) =

‖z‖2dk . Hence, differentiating under the sign of expectation, in the a direction

orthogonal to z⊥, we get that E(∂`fk(z)fk(z)) = 0, where ∂` denotes some deriva-

tive along the direction z⊥. Moreover, E(∂`fk(z) fk(z)) is trivially zero since

E(fk(z)fk(z)) = 0.
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Thereby, from Lemma 5.1.1, we conclude that the linear map f ′(z)|z⊥ is in-

dependent of f(z). The conditional expectation E
[
| det(f ′(z)|z⊥)|2

∣∣f(z) = 0
]

is

equal to the (inconditional) expectation E[| det(f ′(z)|z⊥)|2].

Moreover, since U(Cm+1) acts transitively on S2m+1, and the random field f

is invariant under the action of this group we conclude from (5.1.6) and Lemma

5.1.3 that

EN =
1

2π

vol(S2m+1)

πm
E
[
| det(f ′(e0)|e⊥0 )|2

]
.

Let us write the derivative f ′(e0)|e⊥0 on the basis {e1, . . . , em} of e⊥0 . Similar

to the computations we did in the real case in (4.4.4), we get

E
(
∂fk
∂z`

(e0)
∂fk
∂z`′

(e0)

)
=

∂

∂z`

∂

∂z`′
〈z, w〉dk

∣∣
z=w=e0

= dkδ`,`′ ,

for k, `, `′ = 1 . . . ,m. Then, expressing f ′(e0)|e⊥0 in the canonical basis {e1 . . . , em},
it follows that

f ′(e0)|e⊥0 = ∆(
√
di)Gm,

where Gm an m×m matrix which entries are i.i.d. complex standard Gaussian,

and hence

E(N) = D
1

2π

vol(S2m+1)

πm
E| det(Gm)|2.

Note that | det(Gm)|2 = det(Gm) det(Gm), then,

E| det(Gm)|2 = E det(Gm) det(Gm)

=
∑

π,π′∈Sm

(−1)π(−1)π
′E(g1π(1) . . . gmπ(m)g1π′(1) . . . gmπ′(m))

=
∑
π∈Sm

E|g1π(1)|2 . . . |gmπ(m)|2 =
∑
π∈Sm

1 = m!.

The third equality follows from the independence of the coefficients of Gm and

the fact that they are centered.

Then we conclude

EN = D
vol(S2m+1)m!

2πm+1
= D.
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Remark 5.3.1. Recall that in the proof of Theorem 11 we reduce the problem

of computing the average number of roots, to a problem of random matrices,

namely, compute E(| detG|) where G is a m×m real Gaussian standard matrix.

However, in the complex case, we reduce the problem of computing the average

number of roots to the computation E(| detG|2). This case is much simpler as

compared with the real case since in this case one can develop the terms inside

the determinant and interchange the sum with the expectations sign. This is

what we did.

5.3.2 Second Moment Computations

We compute now EN2, with N the number of projective roots of the system f .

For this computations we need a Rice formula for the second moment adapted

to this case. For short we write f ′(z) to the restriction f ′(z)|z⊥ .

Lemma 5.3.1. One has

4π2(E(N2)−D) =

∫
S2m+1×S2m+1

E
[
| det(f ′(z))|2| det(f ′(w))|2 | f(z) = f(w) = 0

]
pf(z),f(w)(0, 0)dzdw,

Proof. Following Azäıs & Wschebor [2009], let F : S2m+1× S2m+1 → R2m be the

map given by F (z, w) = (f(z), f(w)) and let ∆δ ⊂ S2m+1 × S2m+1 be the set

defined by ∆δ = {(s, t) ∈ S2m+1 × S2m+1 : ‖s − t‖ > δ}. Then, applying Rice

Formula for the geometric measure of F−1(0, 0) (4.2.4) we get:

Eλ2(F−1(0, 0) ∩∆δ) =

=

∫
∆δ

E
[
| det(f ′(z))|2| det(f ′(w))|2 | f(z) = f(w) = 0

]
pf(z),f(w)(0, 0)dzdw,

Taking limit δ ↓ 0 we observe that

E(λ1(F−1(0, 0) ∩∆δ)) ↑ E(λ2(F−1(0, 0)))− E(λ2(F−1(0, 0) ∩∆)),
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5. COMPLEX RANDOM SYSTEMS OF POLYNOMIALS

where ∆ = S2m+1 × S2m+1 −∆0 is the diagonal set. Hence

lim
δ↓0

E(λ1(F−1(0, 0) ∩∆δ)) = 4π2E(N2)− 4π2D

Moreover, since ∆ has zero Lebesgue measure on S2m+1×S2m+1 we conclude the

lemma.

Joint Density pf(z),f(w)

In the next lemma we compute the joint density of the pair (f(z), f(w)) at (0, 0).

Lemma 5.3.2. The density pf(z),f(w) at (0, 0) is given by

pf(z),f(w)(0, 0) =
1

π2m

m∏
`=1

1

1− |〈z, w〉|2d`
.

Proof. Since different rows of the system are independent we have

pf(z),f(w)(0, 0) =
m∏
`=1

pf`(z),f`(w)(0, 0).

Furthermore, the covariance matrix of (f`(z), f`(w)) is Σ =

[
1 〈z, w〉d`

〈w, z〉d` 1

]
.

Therefore pf`(z),f`(w)(0, 0) = 1
π2(1−|〈z,w〉|2d` ) . Hence

pf(z),f(w)(0, 0) =
1

π2m

m∏
`=1

1

1− |〈z, w〉|2d`
.

Conditional Expectation Computation

The natural procedure here is to perform the linear regression of f ′(z) and f ′(w)

over f(z) and f(w). This procedure is quite standard in probability theory and

statistics (see Appendix B.2). We leave this computations to the end of this
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chapter in the next section. One get that

E
[
| det(f ′(z))|2| det(f ′(w))|2 | f(z) = f(w) = 0

]
= E

[
| det(M(z))|2| det(M(w))|2

]
,

(5.3.1)

where M(z) = (ζzij)ij,M(w) = (ζwij )ij are matrices with independent entries such

that

Eζzijζzij = Eζwijζwij =

d2 j 6= 1

d2
iσ

2
i j = 1

Eζzijζwij =

d2〈z, w〉di j 6= 1

d2
i τi j = 1

where

σ2
i = 1− d|〈z, w〉|2d−2

1 + |〈z, w〉|2 + · · ·+ |〈z, w〉|2di−2

τi = 〈z, w〉di−2

[
1− d

1 + |〈z, w〉|2 + · · ·+ |〈z, w〉|2di−2

]
(Compare with [Azäıs & Wschebor, 2009, page 307]).

Case m = 1

In this case we have that the conditional expectation is E(|ζ|2|ζ ′|2), where ζ, ζ ′ are

complex centered Gaussian random variables with variance σ2 and covariance τ .

Applying Lemma 5.3.3 from the next section, for S = ζ/σ, T = ζ ′/σ we deduce

that

E(|ζ|2|ζ ′|2) = σ4 + |τ |2.

Thus

4π2(EN2 −D) =

∫
S3×S3

σ4 + |τ |2

π2(1− |〈z, w〉|2d)
dz dw

=
vol(S3)

π2

∫
S3

σ4 + |τ |2

(1− |〈e0, w〉|2d)
dw
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The integrand depend only on the modulus of the Hermitian inner product be-

tween e0 and w, so we may apply the co-area formula for ψ : S3 → D such that

(e0, w) 7→ 〈e0, w〉. Denote w = (x, y) ∈ C2, then x = 〈e0, w〉, then the Normal

Jacobian is
√

1− |x|2 (see [Blum et al., 1998, Lemma 2, page 206]), and

4π2(EN2 −D) =
vol(S3)

π2

∫
x∈D

σ4 + |τ |2

(1− |x|2d)

∫
θ∈S(
√

1−|x|2)

1√
1− |x|2

dθ dx

=
vol(S3)vol(S1)

π2

∫
D

σ4 + |τ |2

(1− |x|2d)
dx.

Finally, changing to polar coordinates

4π2(EN2 −D) =
vol(S3)(vol(S1))2

π2

∫ 1

0

ρ
σ4 + |τ |2

(1− ρ2d)
dx.

One has
∫ 1

0
ρσ

4+|τ |2
(1−ρ2d)

dx = 1
2
· d(d− 1), and therefore EN2 = D2 as claimed.

5.3.3 Auxiliary computations

Lemma 5.3.3. Let (S, T ) be centered, complex Gaussian random variables with

variance 1 and covariance ρ. Denote Sr, Tr and Sim, Tim for the real and imagi-

nary parts of S and T respectively, denote ρi,j = E(SiTj) for i, j = r, im. Then

ρr,r = ρim,im =
1

2
Re(ρ)

ρr,im = −ρim,r = −1

2
Im(ρ)

Lemma 5.3.4. Let (S, T ) be centered, Gaussian random variables with variance

1 and covariance ρ. Then

1. on the real case E(|S|2|T |2) = 1 + 2ρ2.

2. on the complex case E(|S|2|T |2) = 1 + |ρ|2.

Proof. Real case

Let S,W be two real independent, centered, Gaussian random variables and write

T = ρS +
√

1− ρ2W , then

E(S2T 2) = ρ2ES4 + 2ρ
√

1− ρ2ESW + (1− ρ2)EW 2 = 1 + 2ρ2.
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Complex case

Use the real case for the real and imaginary parts taking into account that these

r.v. have variance a half.

Computation of the covariances of the derivatives

Fix z, w ∈ Cm+1. Let {v2, . . . , vm} be an orthonormal set in Cm+1 such that

〈vk, z〉 = 〈vk, w〉 = 0, (k ≥ 2). Define

vz =
w − 〈w, z〉z√
1− |〈z, w〉|2

, vw =
z − 〈z, w〉w√
1− |〈z, w〉|2

.

Then Bz = {vz, v2, . . . , vm} and Bw = {vw, v2, . . . , vm} are orthonormal basis of

z⊥ and w⊥ respectively.

It is easy to see that

〈z, vw〉 = 〈w, vz〉 =
√

1− |〈z, w〉|2, 〈vz, vw〉 = −〈w, z〉.

Denote ∂kf(w) for ∂f
∂vk

(w), k = z, w, 2, . . . ,m. and express all the derivatives

on these basis.

f ′(z) =


∂zf1(z) ∂2f1(z) . . . ∂mf1(z)

∂zf2(z) ∂2f2(z) . . . ∂mf2(z)
...

...
. . .

...

∂zfm(z) ∂2fm(z) . . . ∂mf(z)

 ,

f ′(w) =


∂wf1(w) ∂2f1(w) . . . ∂mf1(w)

∂wf2(w) ∂2f2(w) . . . ∂mf2(w)
...

...
. . .

...

∂wfm(w) ∂2fm(w) . . . ∂mf(w)
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Lemma 5.3.5. Let z, w ∈ Cm+1 be such that ‖z‖ = ‖w‖ = 1.

k = z k = w k ≥ 2

E ∂kf`(w)f`(w) 0 0

E ∂kf`(w)f`(z) d`〈w, z〉d`−1
√

1− |〈z, w〉|2 0

E ∂kf`(z)f`(z) 0 0

E ∂kf`(z)f`(w) d`〈z, w〉d`−1
√

1− |〈z, w〉|2 0

Furthermore

E∂sf`(z)∂wf`(w) = d`(d` − 1)〈z, w〉d`−2(1− |〈z, w〉|2)− d`〈z, w〉d` .

Proof. Since E f(z)f(z) ≡ 1 on the sphere and we take derivatives on the tangent

space, these derivatives vanish. Besides 〈z, vk〉 = 〈w, vk〉 = 0 for k ≥ 2.

Now

Ef(z)∂wf(w) = ∂w〈w, z〉d

= d〈w, z〉d−1
∂

∂vw
〈w, z〉 = d〈z, w〉d−1〈z, vw〉

= d〈z, w〉d−1
√

1− |〈z, w〉|2.

Taking derivative with respect to vz we have

E∂zf(z)∂wf(w) =
∂

∂vz

(
d〈z, w〉d−1 〈s, vt〉

)
= d(d− 1)〈z, w〉d−2(1− |〈z, w〉|2)− d〈z, w〉d

Regression of f ′(w) over f(z) and f(w):

Choose αw`, βw` such that ∂wf(w)−αf(w)−βf(z) be independent of f(z), f(w).

That is, α, β are the solution of the system:α + 〈z, w〉d` β = 0

〈w, z〉d` α + β = d` 〈w, z〉d`−1 〈z, vw〉
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Then

αw` = −〈z, w〉d` βw` βw` = d`
〈w, z〉d`−1 〈z, vw〉
1− | 〈z, w〉 |2d`

.

The remaining αk`, βk` (k ≥ 2) vanish.

Regression of f ′(z) over f(z) and f(w):

The same arguments show that

α1` = −〈w, z〉d` β1` β1` = d`
〈z, w〉d`−1 〈w, vz〉
1− | 〈z, w〉 |2d`

.

The remaining αk`, βk` (k ≥ 2) vanish.

Computation of τ and σ2

τ = E (∂zf(z)− αsf(z)− βsf(w)) ∂wf(w)

Then, by Lemma 5.3.5

τ = d(d− 1)〈z, w〉d−2(1− |〈z, w〉|2)− d〈z, w〉d−2|〈z, w〉|2+

+ d2〈z, w〉d−2|〈z, w〉|2d 1− |〈z, w〉|2

1− |〈z, w〉|2d

= d〈z, w〉d−2

[
(d− 1)(1− |〈z, w〉|2)− |〈z, w〉|2 + d|〈z, w〉|2d 1− |〈z, w〉|2

1− |〈z, w〉|2d

]
= d〈z, w〉d−2

[
−1 + d(1− |〈z, w〉|2)

(
1 +

|〈z, w〉|2d

1− |〈z, w〉|2d

)]
= d〈z, w〉d−2

[
−1 + d

1− |〈z, w〉|2

1− |〈z, w〉|2d

]
.

That is, for each i we have

τi = 〈z, w〉di−2

[
1− d

1 + |〈z, w〉|2 + · · ·+ |〈z, w〉|2di−2

]
Similarly,

σ2 = E (∂zf(z)− αsf(z)− βsf(w)) ∂zf(z)
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Again by Lemma 5.3.5 we obtain:

σ2 = d

[
1− d|〈z, w〉|2d−2 (1− |〈z, w〉|2)

1− |〈z, w〉|2d

]
,

and therefore for each i we get

σ2
i = 1− d|〈z, w〉|2d−2

1 + |〈z, w〉|2 + · · ·+ |〈z, w〉|2di−2
.
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Chapter 6

Minimizing the discrete

logarithmic energy on the sphere:

The role of random polynomials

In this chapter we prove that points in the sphere associated with roots of random

polynomials via the stereographic projection, are surprisignly well-suited with

respect to the minimal logarithmic energy on the sphere. That is, roots of random

polynomials provide a fairly good approximation to Elliptic Fekete points. This

chapter follows from a joint work with Carlos Beltrán and Michael Shub. (c.f.

Armentano et al. [2011]).

6.1 Introduction and Main Result

This chapter deals with the problem of distributing points in the 2-dimensional

sphere, in a way that the logarithmic energy is minimized. More precisely, let

x1, . . . , xN ∈ R3, and let

V (x1, . . . , xN) = ln
∏

1≤i<j≤N

1

‖xi − xj‖
= −

∑
1≤i<j≤N

ln ‖xi − xj‖ (6.1.1)
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be the logarithmic energy of the N -tuple x1, . . . , xN . Here, ‖ · ‖ is the Euclidean

norm in R3. Let

VN = min
x1,...,xN∈S2

V (x1, . . . , xN)

denote the minimum of this function when the xk are allowed to move in the unit

sphere S2 = {x ∈ R3 : ‖x‖ = 1}. We are interested in N -tuples minimizing the

quantity (6.1.1). These optimal N -tuples are usually called Elliptic Fekete Points.

This is a classical problem (see Whyte [1952] for its origins) that has attracted

much attention during the last years. The reader may find modern background in

Dragnev [2002], Kuijlaars & Saff [1998], Rakhmanov et al. [1994] and references

therein. It is considered an example of highly non-trivial optimization problem.

In the list of Smale’s problems for the XXI Century Smale [2000], problem number

7 reads

Problem 1. Can one find x1, . . . , xN ∈ S2 such that

V (x1, . . . , xN)− VN ≤ c lnN, (6.1.2)

c a universal constant?

More precisely, Smale demands a real number algorithm in the sense of Blum

et al. [1998] that with input N returns a N -tuple x1, . . . , xN satisfying equation

(6.1.2), and such that the running time is polynomial on N .

One of the main difficulties when dealing with Problem 1 is that the value of

VN is not completely known. To our knowledge, the most precise result is the

following, proved in [Rakhmanov et al., 1994, Th. 3.1 and Th. 3.2].

Theorem 19. Defining CN by

VN = −N
2

4
ln

(
4

e

)
− N lnN

4
+ CNN,

we have

−0.112768770... ≤ lim inf
N→∞

CN ≤ lim sup
N→∞

CN ≤ −0.0234973...
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Thus, the value of VN is not even known up to logarithmic precision, as

required by equation (6.1.2).

The lower bound of Theorem 19 is obtained by algebraic manipulation of

the formula for V (x1, . . . , xN), and the upper bound is obtained by the explicit

construction of N -tuples x1, . . . , xN at which V attains small values.

In this chapter we choose a completely different approach to this problem.

First, assume that y1, . . . , yN are chosen randomly and independently on the

sphere, with the uniform distribution. One can easily show that the expected

value of the function V (y1, . . . , yN) in this case is,

E(V (y1, . . . , yN)) = −N
2

4
ln

(
4

e

)
+
N

4
ln

(
4

e

)
. (6.1.3)

Thus, a random choice of points in the sphere with the uniform distribution

already provides a reasonable approach to the minimal value VN , accurate to the

order of O(N lnN). It is a natural question whether other handy probability

distributions, i.e. different from the uniform distribution in (S2)N , may yield

better expected values. We will give a partial answer to this question in the

framework of random polynomials.

Part of the motivation of Problem 1 is the search for a polynomial all of

whose roots are well conditioned, in the context of Shub & Smale [1993c]. On the

other hand, roots of random polynomials are known to be well conditioned, for a

sensible choice of the random distribution of the polynomial (see Shub & Smale

[1993b]). We make this connection more precise in the historical note at the end

of the Introduction. This idea motivates the following approach:

Let f be a degree N polynomial. Let z1, . . . , zN ∈ C be its complex roots.

Let zk = uk + ivk and let

ẑk =
(uk, vk, 1)

1 + u2
k + v2

k

∈ {x ∈ R3 : ‖x− (0, 0, 1/2)‖ = 1/2}, 1 ≤ k ≤ N, (6.1.4)

be the associated points in the Riemann Sphere, i.e. the sphere of diameter

1 centered at (0, 0, 1/2). Note that the ẑk’s are the inverse image under the

stereographic projection of the zk’s, seen as points in the 2-dimensional plane
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{(u, v, 1) : u, v ∈ R}. Finally, let

xk = 2ẑk − (0, 0, 1) ∈ S2, 1 ≤ k ≤ N, (6.1.5)

be the associated points in the unit sphere. Note that the ẑk, xk depend only on

f , so we can consider the two following mappings

f 7→ V (ẑ1, . . . , ẑN), f 7→ V (x1, . . . , xN).

These two mappings are well defined in the sense that they do not depend on

the way we choose to order the roots of f . Our main claim is that the points

x1, . . . , xN are well-distributed for the function of equation (6.1.1), if the poly-

nomial f is chosen with a particular distribution. That is, we will prove the

following theorem in Section 6.2.

Theorem 20 (Main). Let f(X) =
∑N

k=0 akX
k ∈ PN be a random polynomial,

such that the coefficients ak are independent complex random variables, such that

the real and imaginary parts of ak are independent (real) Gaussian random vari-

ables centered at 0 with variance
(
N
k

)
. Then, with the notations above,

E (V (ẑ1, . . . , ẑN)) =
N2

4
− N lnN

4
− N

4
.

E (V (x1, . . . , xN)) = −N
2

4
ln

(
4

e

)
− N lnN

4
+
N

4
ln

4

e
.

By comparison of theorems 19 and 20 and equation (6.1.3), we see that the

value of V (x1, . . . , xN) is surpringsingly small at points coming from the solution

set of random polynomials! In figure 6.1 below we have plotted (using Matlab)

the roots z1, . . . , z70 and associated points x1, . . . , x70 of a polynomial of degree

70 chosen randomly.

Equivalently, one can take random homogeneous polynomials (as in the his-

torical note at the end of this introduction) and consider its complex projective

solutions, under the identification of P(C2) with the Riemann sphere.

There exist different approaches to the problem of actually producing N -

tuples satisfying inequality (6.1.2) above (see Bendito et al. [2009], Rakhmanov
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et al. [1994], Zhou [1995] and references therein), although none of them has been

proved to solve Problem 1 yet. In Bendito et al. [2009] numerical experiments

were done, designed to find local minima of the function V and involving massive

computational effort. The method used there is a descent method which follows

a gradient-like vector field. For the initial guess, N points are chosen at random

in the unit sphere, with the uniform distribution.

Our Theorem 20 above suggests that better-suited initial guesses are those

coming from the solution set of random polynomials. More especifically, consider

the following numerical procedure:

1. Guess ak ∈ C, k = 0 . . . N , complex random variables as in Theorem 20.

2. Construct the polynomial f(X) =
∑N

k=0 akX
k and find its N complex so-

lutions z1, . . . , zN ∈ C.

3. Construct the associated points in the unit sphere x1, . . . , xN following equa-

tions (6.1.4,6.1.5).

In view of Theorem 20, it seems reasonable for a flow-based search optimization

procedure that attempts to compute optimal x1, . . . , xN , to start by executing the

procedure described above and then following the desired flow. Moreover, this

procedure might solve Smale’s problem on its own, as necessarily many random

choices of the ak’s will produce values of V below the average and very close to

VN , possibly close enough to satisfy equation (6.1.2).

As it is well-known, item (2) of this procedure can only be done approximately.

We may perform this task using some homotopy algorithm as the ones suggested

in Beltrán & Pardo [2011], Shub [2009], Shub & Smale [1993a] which guarantee

average polynomial running time, and produce arbitrarily close approximations

to the zk. In practice, it may be preferable to construct the companion matrix of

f and to compute its eigenvalues with some standard Linear Algebra method.

The choice of the probability distribution for the coefficients of f(X) in The-

orem 20 is not casual. That probability distribution corresponds to the classical

unitarily invariant Hermitian structure in the space of homogeneous polynomials,

recalled at the beginning of Section 6.2 below (or see Chapter 3). This Hermitian
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structure is called by some authors Bombieri-Weyl structure, or Kostlan struc-

ture, and it is a classical construction with many interesting properties. The

reader may see Blum et al. [1998] for background.

6.1.1 Historical Note

According to Smale [2000], part of the original motivation for Problem 1 was

the search for well conditioned homogeneous polynomials as in Shub & Smale

[1993c]. Given g = g(X, Y ) a degree N homogeneous polynomial with unknowns

X, Y and complex coefficients, the condition number of g at a projective root

ζ = (x, y) ∈ P(C2) is defined by

µ(g, ζ) = N1/2 ‖g‖‖ζ‖N−1

|Dg(ζ) |ζ⊥ |
,

where ‖g‖ is the Bombieri-Weyl norm of g and Dg(ζ) |ζ⊥ is the differential map-

ping of g at ζ, restricted to the complex orthogonal complement of ζ.

Let f(X) =
∑N

k=0 akX
k be a degree N polynomial with one unknown X,

and consider the homogeneous counterpart of f , g(X, Y ) =
∑N

k=0 akX
kY N−k.

The condition number µ(f, z) of f at a zero z ∈ C is then defined as µ(f, z) =

µ(g, (z, 1)).

Shub & Smale [1993b] proved that well-conditioned polynomials are highly

probable. In Shub & Smale [1993c] the problem was raised as to how to write a

deterministic algorithm which produces a polynomial g all of whose roots are well-

conditioned. It was also realised that a polynomial whose projective roots (seen

as points in the Riemann sphere) have logarithmic energy close to the minimum

as in Smale’s problem after scaling to S2, are well conditioned.

From the point of view of Shub & Smale [1993c], the ability to choose points at

random already solves the problem. Here, instead of trying to use the logarithmic

energy function V (·) to produce well-conditioned polynomials, we use the fact

that random polynomials are well-conditioned, to try to produce low-energy N -

tuples.
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The relation between the condition number and the logarithmic energy is

V (ẑ1, . . . , ẑN) =
1

2

N∑
i=1

lnµ(f, zi) +
N

2

N∑
i=1

ln
√

1 + |zi|2 −
N

2
ln ‖f‖ − N

4
lnN,

where the roots in P(C2) are (zi, 1), therefore f is monic.

Figure 6.1: The points zk and xk for a degree 70 polynomial f chosen at random
(using Matlab). The reader may see that the points in the sphere are pretty well
distributed.

6.2 Technical tools and proof of Theorem 20

As in the introduction, f = f(X) denotes a polynomial of degree N with com-

plex coefficients, z1, . . . , zN ∈ C are the complex roots of f , and ẑ1, . . . , ẑN and

x1, . . . , xN are the associated points in the Riemann Sphere and S2 respectively

defined by equations (6.1.4,6.1.5). Let PN be the vector space of degree N poly-

nomials with complex coefficients. As in Beltrán & Pardo [2009a], Blum et al.

[1998], we consider PN endowed with the Bombieri-Weyl inner product, given by

〈
N∑
k=0

akX
k,

N∑
k=0

bkX
k〉 =

N∑
k=0

(
N

k

)−1

akbk.
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We denote the associated norm in PN simply by ‖·‖. Let f(X) =
∑N

k=0 akX
k be a

random polynomial, where the ak’s are complex random variables as in Theorem

20. Then, note that the expected value of some measurable function φ : PN → R
satisfies

E(φ(f)) =
1

(2π)N+1

∫
f∈PN

φ(f)e−‖f‖
2/2 dPN . (6.2.1)

Let W = {(f, z) ∈ PN × C : f(z) = 0} be the so-called solution variety, which is

a complex smooth submanifold of ⊆ PN × C of dimension N + 1. For z ∈ C, let

Wz = {f ∈ PN : f(z) = 0} be the set of polynomials which have z as a root. We

consider Wz endowed with the inner product inherited from PN .

Proposition 6.2.1.

V (ẑ1, . . . , ẑN) = (N − 1)
N∑
i=1

ln
√

1 + |zi|2 −
1

2

N∑
i=1

ln |f ′(zi)|+
N

2
ln |aN |,

Proof. A simple algebraic manipulation yields

V (ẑ1, . . . , ẑN) = −
∑

1≤i<j≤N

ln ‖ẑi − ẑj‖ = −
∑

1≤i<j≤N

ln
|zi − zj|√

1 + |zi|2
√

1 + |zj|2
=

(N − 1)
N∑
i=1

ln
√

1 + |zi|2 −
∑

1≤i<j≤N

ln |zi − zj|.

Note that

f(X) = aN

N∏
i=1

(X − zi).

Thus,

f ′(zi) = aN
∏
i 6=j

(zi − zj),

and

|aN |N
N∏
i=1

1

|f ′(zi)|
=

N∏
i=1

∏
j 6=i

1

|zi − zj|
=

∏
1≤i<j≤N

1

|zi − zj|2
.

Thus,

−
∑

1≤i<j≤N

ln |zi − zj| =
1

2

(
−

N∑
i=1

ln |f ′(zi)|+N ln |aN |

)
,
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and the proposition follows.

The rest of the proof of Theorem 20 will consist on the computation of the

expected values of the quantities in Proposition 6.2.1. The following lemma will

be useful

Lemma 6.2.1. For any t ∈ R,

N∑
k=0

(
N

k

)
t2k = (1 + t2)N ,

N∑
k=1

(
N

k

)
kt2k−1 = Nt(1 + t2)N−1,

N∑
k=1

(
N

k

)
k2t2k−2 = N(1 + t2)N−2(1 +Nt2).

Proof. The first equality is the classical binomial expansion. Differentiate it to

get

2
N∑
k=1

(
N

k

)
kt2k−1 = 2Nt(1 + t2)N−1,

and the second equality follows. Differentiate again to get

N∑
k=1

(
N

k

)
(2k2 − k)t2k−2 = N(1 + t2)N−1 + 2N(N − 1)t2(1 + t2)N−2.

Hence,

2
N∑
k=1

(
N

k

)
k2t2k−2 =

1

t

N∑
k=1

(
N

k

)
kt2k−1 +N(1+t2)N−1 +2N(N−1)t2(1+t2)N−2 =

N(1+ t2)N−1 +N(1+ t2)N−1 +2N(N−1)t2(1+ t2)N−2 = 2N(1+ t2)N−2(1+Nt2).

The last equality of the lemma follows.

187



6. MINIMIZING THE DISCRETE LOGARITHMIC ENERGY ON
THE SPHERE: THE ROLE OF RANDOM POLYNOMIALS

Proposition 6.2.2. Let φ : W → R be a measurable function. Then,∫
f∈PN

∑
z:f(z)=0

φ(f, z) dPN =

∫
z∈C

1

(1 + |z|2)N

∫
f∈Wz

|f ′(z)|2φ(f, z) dWz dC

(6.2.2)

Proof. As in [Blum et al., 1998, Th. 5, p. 243], we apply the smooth coarea

formula to the double fibration

W

↙ ↘
PN C

to get the formula∫
f∈PN

∑
z:f(z)=0

φ(f, z) dPN =

∫
z∈C

∫
f∈Wz

(DGz(f)DGz(f)∗)−1φ(f, z) dWz dC,

where Gz : Uf → Uz is the implicit function defined in a neighborhood of f

satisfies g(Gz(g)) = 0, and DGz(f) is the Jacobian matrix of Gz at f , writen in

some orthonormal basis. By implicit differentiation, DGz(f)ḟ = −f ′(z)−1ḟ(z).

Thus, in the orthonormal basis given by the monomials
(
N
k

)1/2
Xk, k = 0 . . . N ,

the jacobian matrix is

DGz(f) = − 1

f ′(z)

((
N

0

)1/2

z0, . . . ,

(
N

N

)1/2

zN

)
.

We conclude that DGz(f)DGz(f)∗ = |f ′(z)|−2
∑N

k=0

(
N
k

)
|z|2k = |f ′(z)|−2(1 +

|z|2)N . The proposition follows.

Proposition 6.2.3. Let z ∈ C and let φ : R → R be a measurable function.

Then,∫
f∈Wz

φ(|f ′(z)|2)e−‖f‖
2/2 dWz = (2π)N

∫ ∞
0

tφ
(
t2N(1 + |z|2)N−2

)
e−t

2/2 dt.

Proof. Consider the mapping ϕ : Wz → C, f(X) =
∑N

k=0 akX
k 7→ w = f ′(z) =
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∑N
k=0 kakz

k−1. Denote by NJϕ(f) the Normal Jacobian of ϕ at f , that is

NJϕ(f) = max
ḟ∈Wz ,‖ḟ‖=1

‖Dϕ(f)ḟ‖2

(see [Blum et al., 1998, pag. 241] for references and background). Let g1, g2 ∈ PN

be the following polynomials,

g1(X) =
N∑
k=0

(
N

k

)
z kXk, g2(X) =

N∑
k=1

k

(
N

k

)
z k−1Xk

Note that for any f ∈ PN and z ∈ C, we have

f(z) = 〈f, g1〉, f ′(z) = 〈f, g2〉.

Thus,

Wz = {f ∈ PN : f(z) = 0} = {f ∈ PN : 〈f, g1〉 = 0},

Dϕ(f)ḟ = ḟ ′(z) = 〈ḟ , g2〉.

Thus, if π is the orthogonal projection onto Wz, we have

NJϕ(f) = max
ḟ∈Wz ,‖ḟ‖=1

|〈ḟ , g2〉|2 = ‖π (g2)‖2 = ‖g2‖2 − |〈g1, g2〉|2

‖g1‖2
=

N∑
k=1

(
N

k

)
k2|z|2k−2 −

(∑N
k=1

(
N
k

)
k|z|2k−1

)2

∑N
k=0

(
N
k

)
|z|2k

.

From Lemma 6.2.1, we conclude

NJϕ(f) = N(1 + |z|2)N−2(1 +N |z|2)− N2|z|2(1 + |z|2)2N−2

(1 + |z|2)N
=

N(1 + |z|2)N−2(1 +N |z|2)−N2|z|2(1 + |z|2)N−2 = N(1 + |z|2)N−2

The coarea formula [Blum et al., 1998, p. 241] then yields∫
f∈Wz

φ(|f ′(z)|2)e−‖f‖
2/2 dWz = (6.2.3)
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1

N(1 + |z|2)N−2

∫
w∈C

φ(|w|2)

∫
{f∈Wz :f ′(z)=w}

e−‖f‖
2/2 df dC.

The set {f ∈ Wz : f ′(z) = w} is an affine subspace of PN of dimension N − 1,

defined by the equations 〈f, g1〉 = 0, 〈f, g2〉 = w, which are linear independent

equations on the coefficients of f . One can compute the norm of the minimal

norm element of this affine subspace using standard tools from Linear Algebra.

This minimal norm turns to be equal to |w|ν where

ν =
1√

‖g2‖2 − |〈g1,g2〉|2
‖g1‖2

=
1√

NJϕ(f)
=

1
√
N(1 + |z|2)

N−2
2

.

Thus, ∫
{f∈Wz :f ′(z)=w}

e−‖f‖
2/2 df = (2π)N−1 exp

(
−ν2|w|2/2

)
,

and∫
w∈C

φ(|w|2)

∫
f∈Wz :f ′(z)=w

e−‖f‖
2/2 df dC = (2π)N

∫ ∞
0

ρφ(ρ2)e−ν
2ρ2/2 dρ =

(2π)N

ν2

∫ ∞
0

tφ

(
t2

ν2

)
e−t

2/2 dt = (2π)NN(1 + |z|2)N−2

∫ ∞
0

tφ

(
t2

ν2

)
e−t

2/2 dt.

From this and equation (6.2.3) we conclude,∫
f∈Wz

φ(|f ′(z)|2)e−‖f‖
2/2 dWz = (2π)N

∫ ∞
0

tφ

(
t2

ν2

)
e−t

2/2 dρ,

as wanted.

Proposition 6.2.4. Let f(X) =
∑N

k=0 akX
k where the ak are as in Theorem 20.

Then,

E

(
N∑
i=1

ln
√

1 + |zi|2
)

=
N

2
. (6.2.4)

E (ln |aN |) =
ln(2)− γ

2
. (6.2.5)

E

(
N∑
i=1

ln |f ′(zi)|

)
=

(ln(2)− 1− γ + ln(N) +N)N

2
. (6.2.6)
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Here, γ ∼ 0.5772156649 is Euler’s constant.

Proof. From equalities (6.2.1,6.2.2),

E

(
N∑
i=1

ln
√

1 + |zi|2
)

=
1

(2π)N+1

∫
f∈PN

N∑
i=1

ln
√

1 + |zi|2e−‖f‖
2/2 dPN =

1

(2π)N+1

∫
z∈C

ln
√

1 + |z|2
(1 + |z|2)N

∫
f∈Wz

|f ′(z)|2e−‖f‖2/2 dWz dC.

From Proposition 6.2.3,∫
f∈Wz

|f ′(z)|2e−‖f‖2/2 dWz = (2π)N
∫ ∞

0

t3N(1 + |z|2)N−2e−t
2/2 dt =

(2π)N2N(1 + |z|2)N−2.

Thus,

E

(
N∑
i=1

ln
√

1 + |zi|2
)

=
N

π

∫
z∈C

ln
√

1 + |z|2
(1 + |z|2)2

dC =

= 2N

∫ ∞
0

ρ ln
√

1 + ρ2

(1 + ρ2)2
dρ =

N

2
,

and equation (6.2.4) follows. Equation (6.2.5) is trivial, as

E (ln |aN |) =
1

2π

∫
a∈C

ln |a|e−|a|2/2 dC =

∫ ∞
0

ρ ln(ρ)e−ρ
2/2 dρ =

ln(2)− γ
2

.

Now let us prove equation (6.2.6). Note that from the equalities (6.2.1,6.2.2),

E

(
N∑
i=1

ln |f ′(zi)|

)
=

1

(2π)N+1

∫
f∈PN

e−‖f‖
2/2

∑
z∈C:f(z)=0

ln |f ′(z)| dPN =

1

(2π)N+1

∫
z∈C

1

(1 + |z|2)N

∫
f∈Wz

e−‖f‖
2/2|f ′(z)|2 ln |f ′(z)| dWz dC =

From Proposition 6.2.3, we know that∫
f∈Wz

|f ′(z)|2 ln |f ′(z)|e−‖f‖2/2 dWz =
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(2π)N
∫ ∞

0

t
(
t2N(1 + |z|2)N−2

)
ln
√
t2N(1 + |z|2)N−2e−t

2/2 dt =

(2π)NN(1 + |z|2)N−2

∫ ∞
0

t3
(

ln t+ ln
√
N(1 + |z|2)N−2

)
e−t

2/2 dt =

(2π)NN(1 + |z|2)N−2
(

1− γ + ln 2 + 2 ln
√
N(1 + |z|2)N−2

)
.

Thus,

E

(
N∑
i=1

ln |f ′(zi)|

)
=
N

2π

∫
z∈C

1− γ + ln 2 + ln(N(1 + |z|2)N−2)

(1 + |z|2)2
dC =

N (1− γ + ln 2 + lnN)

∫ ∞
0

ρ

(1 + ρ2)2
dρ+N(N − 2)

∫ ∞
0

ρ ln(1 + ρ2)

(1 + ρ2)2
dρ =

N

2
(1− γ + ln 2 + lnN) +N

N − 2

2
,

and equation (6.2.6) follows.

6.2.1 Proof of Theorem 20

From Proposition 6.2.1,

E (V (ẑ1, . . . , ẑN)) = (N−1)E

(
N∑
i=1

ln
√

1 + |zi|2
)
−1

2
E

(
N∑
i=1

ln |f ′(zi)|

)
+
N

2
E (ln |aN |) ,

which from Proposition 6.2.4 is equal to

N(N − 1)

2
− (ln(2)− 1− γ + ln(N) +N)N

4
+
N(ln(2)− γ)

4
,

and the first assertion of Theorem 20 follows. The second equality of Theorem

20 is then trivial, as the affine transformation in R3 that takes the ẑk’s into the

xk’s is a traslation followed by a homothety of dilation factor 2. Hence,

‖xi − xj‖ = 2‖ẑi − ẑj‖, 1 ≤ i < j ≤ N,
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and for any choice of x1, . . . , xN we have

V (x1, . . . , xN) = V (ẑ1, . . . , ẑN)− N(N − 1)

2
ln 2.
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Appendix B

Probability Theory

B.1 Gaussian distributions

Let (Ω,A, P ) be a probability space, that is, Ω is a set of “samples” provided by

a σ-algebra A, and P : A→ [0, 1] is a proabability measure (i.e. P (Ω) = 1).

A measurable function η : (Ω,A) → (R,BR) is called a random variable in

(Ω,A). Here BR is the Borel σ-algebra in R.

Given η a random variable in (Ω,A, P ), the probability distribution Pη asso-

ciated to η is the push-forward mesure η∗P = P ◦ η−1, that is, the measure on

(R,BR) given by Pη(B) = P (η−1(B)) for all B ∈ BR.

In this way, a random variable η in (Ω,A, P ) induces a probability space in

(R,BR, Pη).

We say that the random variable η is a Gaussian random variable centered

at µ ∈ R with variance σ2 > 0, and we write η ∼ N(µ, σ2), when the induced

probability distribution Pη on (R,BR) is given by

Pη(B) =
1√
2πσ

∫
B

e−(x−µ)2/(2σ2) dx, for all B ∈ BR.

A random vector is a n-tuple η = (η1, . . . , ηn) whose components ηi are random

variables on the same probability space (Ω,A, P ). Mutatis mutandis, the random

vector η induces a probability measure on (Rn,BRn , Pη).

We say that the random vector η = (η1, . . . , ηn) is a Gaussian random vector

centered at µ ∈ Rn with variance matrix Var(η) = Σ (positive definite), when
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the induced probability measure on (Rn,BRn) is given by

Pη(B) =
1√

2π
n√

det(Σ)

∫
B

e−
1
2
〈Σ−1(x−µ),x−µ〉 dx1 . . . dxn, for all B ∈ BRn .

Here 〈·, ·〉 is the scalar product in Rn.

When µ = 0 and Σ = In we say that η = (η1, . . . , ηn) is a standard Gaussian

in Rn.

Remark:

• One can extend the definition of a Gaussian random vector when Var(η)

is not positively definite. However in order to extend this definition one

should introduce the Fourier transform. See for example Azäıs & Wschebor

[2009].

• When Ω = Rn the σ-algebra A is given by the Borel σ-algebra BRn .

B.2 Conditional Expectation

The conditional expectation is fairly known concept in probability and statistics.

In the case that the random variables involved are Gaussian, the conditional

expectation takes simple form:

Assume that ξ and η are random vectors on Rm and Rn respectively and such

that the distribution of (ξ, η) ∈ Rm+n is Gaussian. Assume also that Var(η) is

positive definite. For simplicity, assume that ξ and η are centered.

Let ϕ : Rm → R be a bounded function, and suppose we want to compute

E(ϕ(ξ)|η = y).

The idea is to choose a deterministic matrix C such that the random vectors

ζ = ξ − Cη and η become independent. That is, choose C such that

0 = Cov(ξ − Cη, η) := E((ξ − Cη)ηT ) = E(ξηT )− CVar(η),

where aT is the transpose of the column vector a.
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Therefore,

E(ϕ(ξ)|η = y) = E(ϕ(ζ + Cη)|η = y) = E(ϕ(ζ + Cy)),

where ζ is a centered Gaussian variable with variance matrix

Var(ξ)− Cov(ξ, η)Var(η)−1Cov(ξ, η)T .

B.3 Stochastic Process and Random Fields

A real valued stochastic process indexed by the set I is collection of random

variables X = {X(t) : t ∈ I} defined on a probability space (Ω,A, P ). In other

words, a stochastic process is a function X : Ω× I → R, X(ω, t) = X(t)(ω), such

that is measurable in the first variable.

For a fixed ω ∈ Ω the function X(ω, ·) : I → R, given by t 7→ X(ω, t), is

a trajectory of the process. In this way, a stochastic process may be seen as a

random ”variable” taking values on a space of functions: ω ∈ Ω 7→ X(ω, ·) ∈ RI ,

where RI is the set of functions from I to R.

We say that a random process X is Gaussian is given any finite set of indexes

{t1, . . . , tk}, the random vector (X(t1), . . . , X(tk)) is Gaussian.

When X is a collection of random vectors on Rk, we say that X : Ω× I → Rk

is a random field or stochastic fields.

In the special case when Ω = RI , the canonical process is given by X(t)(ω) =

ω(t).
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Mouriño, C. & Sánchez, M.T. (2009). Computational cost of the Fekete

problem. I. The forces method on the 2-sphere. J. Comput. Phys., 228, 3288–

3306. 182, 183

Bharucha-Reid, A.T. & Sambandham, M. (1986). Random polynomials .

Probability and Mathematical Statistics, Academic Press Inc., Orlando, FL.

17, 21, 136, 152
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